Functional network motifs defined through integration of protein-protein and genetic interactions

Author:

Sahoo Amruta1,Pechmann Sebastian2

Affiliation:

1. Département de Biochimie, Université de Montréal, Montréal, QC, Canada

2. Sebastian Pechmann Research Lab, Saarbrücken, Germany

Abstract

Cells are enticingly complex systems. The identification of feedback regulation is critically important for understanding this complexity. Network motifs defined as small graphlets that occur more frequently than expected by chance have revolutionized our understanding of feedback circuits in cellular networks. However, with their definition solely based on statistical over-representation, network motifs often lack biological context, which limits their usefulness. Here, we define functional network motifs (FNMs) through the systematic integration of genetic interaction data that directly inform on functional relationships between genes and encoded proteins. Occurring two orders of magnitude less frequently than conventional network motifs, we found FNMs significantly enriched in genes known to be functionally related. Moreover, our comprehensive analyses of FNMs in yeast showed that they are powerful at capturing both known and putative novel regulatory interactions, thus suggesting a promising strategy towards the systematic identification of feedback regulation in biological networks. Many FNMs appeared as excellent candidates for the prioritization of follow-up biochemical characterization, which is a recurring bottleneck in the targeting of complex diseases. More generally, our work highlights a fruitful avenue for integrating and harnessing genomic network data.

Funder

The Natural Sciences and Engineering Research Council of Canada

The Canada Research Chair in Computational Systems Biology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3