Effects of fire disturbance on species and functional compositions vary with tree sizes in a tropical dry forest

Author:

Kaewsong Kanokporn1,Chang-Yang Chia-Hao2ORCID,Bunyavejchewin Sarayudh3,Kraichak Ekaphan4,Yang Jie5,Sun Zhenhua5,Zhang Caicai6,Li Wenfei7,Lin Luxiang5,Sun I-Fang1ORCID

Affiliation:

1. Department of Natural Resources and Environmental Studies, College of Environmental Studies, National Dong Hwa University, Hualien, Taiwan

2. Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan

3. CTFS-ForestGEO, Smithsonian Institution, Bangkok, Thailand

4. Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand

5. CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China

6. Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China

7. School of Ecology and Environmental Science, Yunnan University, Kunming, China

Abstract

Background Disturbances are crucial in determining forest biodiversity, dynamics, and ecosystem functions. Surface fire is a significant disturbance in tropical forests, but research on the effect of surface fire on structuring species and functional composition in a community through time remains scarce. Using a 20-year dataset of tree demography in a seasonal evergreen tropical forest in Thailand, we specifically addressed two essential questions: (1) What is the pattern of temporal turnover in species and functional composition in a community with frequent fire disturbance? (2) How did the temporal turnover vary with tree size? Methods We analyzed species compositional and functional temporal turnovers in four different tree size classes among five tree censuses. We quantified species turnover by calculating Bray-Curtis dissimilarity, and investigated its underlying mechanisms by comparing pairwise dissimilarity of functional traits with simulations from null models. If fire disturbances contribute more to a stochastic process, the functional composition would display a random pattern. However, if they contribute more towards a deterministic process, the functional composition should reveal a non-random pattern. Results Over 20 years (1994–2014), we observed changes in species composition, whereas functional composition remained relatively stable. The temporal turnover patterns of species and functional compositions varied with tree sizes. In particular, temporal functional turnover shifted very little for large trees, suggesting that changes in species composition of larger trees are contributed by species with similar functional traits through time. The temporal functional composition turnovers of smaller trees (DBH ≤ 5 cm) were mostly at random. We detected a higher functional turnover than expected by null models in some quadrats throughout the 50-ha study plot, and their observed turnover varied with diameter classes. Conclusions Species compositional changes were caused by changes in the abundance of species with similar functional traits through time. Temporal functional turnover in small trees was random in most quadrats, suggesting that the recruits came from the equal proportions of surviving trees and new individuals of fast-growing species, which increased rapidly after fires. On the other hand, functional composition in big trees was more likely determined by surviving trees which maintained higher functional similarities than small trees through time. Fire disturbance is important for ecosystem functions, as changing forest fire frequency may alter forest turnover, particularly in functional composition in the new recruits of this forest.

Funder

Strategic Priority Research Program of the Chinese Academy of Science

National Natural Science Foundation of China-Yunnan Province

Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3