Autophagic flux inhibition and lysosomogenesis ensuing cellular capture and retention of the cationic drug quinacrine in murine models

Author:

Parks Alexandre1,Charest-Morin Xavier1,Boivin-Welch Michael1,Bouthillier Johanne1,Marceau Francois1

Affiliation:

1. Research Center CHU de Québec, Université Laval, Quebec City QC, Canada

Abstract

The proton pump vacuolar (V)-ATPase is the driving force that mediates the concentration of cationic drugs (weak bases) in the late endosome-lysosome continuum; secondary cell reactions include the protracted transformation of enlarged vacuoles into autophagosomes. We used the inherently fluorescent tertiary amine quinacrine in murine models to further assess the accumulation and signaling associated with cation trapping. Primary fibroblasts concentrate quinacrine ∼5,000-fold from their culture medium (KM9.8 µM; transport studies). The drug is present in perinuclear granules that are mostly positive for Rab7 and LAMP1 (microscopy). Both drug uptake and retention are extensively inhibited by treatments with the V-ATPase inhibitor bafilomycin A1. The H+ionophore monensin also prevented quinacrine concentration by fibroblasts. However, inhibition of plasma membrane transporters or of the autophagic process with spautin-1 did not alter quinacrine transport parameters. Ancillary experiments did not support that low micromolar concentrations of quinacrine are substrates for organic cation transporters-1 to -3 or P-glycoprotein. The secondary autophagy induced by quinacrine in cells may derive from the accumulation of incompetent autophagolysosomes, as judged from the accumulation of p62/SQSTM1 and LC3 II (immunoblots). Accordingly, protracted lysosomogenesis is evidenced by increased expression of LAMP1 and LAMP2 in quinacrine-treated fibroblasts (48 h, immunoblots), a response that follows the nuclear translocation of the lysosomal genesis transcription factor TFEB and upregulation of LAMP1 and −2 mRNAs (24 h). Quinacrine administration to live mice evidenced variable distribution to various organs and heterogeneous accumulation within the lung (stereo-microscopy, extraction). Dose-dependentin vivoautophagic and lysosomal accumulation was observed in the lung (immunoblots). No evidence has been found for transport or extrusion mechanisms modulating the cellular uptake of micromolar quinacrine at the plasma membrane level. As shownin vitroandin vivo, V-ATPase-mediated cation sequestration is associated, above a certain threshold, to autophagic flux inhibition and feed-back lysosomogenesis.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference54 articles.

1. Multiscale distribution and bioaccumulation analysis of clofazimine breveals a massive immune system-mediated xenobiotic sequestration response;Baik;Antimicrobial Agents and Chemotherapy,2013

2. Vacuolar ATPase-mediated sequestration of local anesthetics in swollen macroautophagosomes;Bawolak;Canadian Journal of Anaesthesia,2010

3. Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine;Beck;Biochemical and Biophysical Research Commuunications,1988

4. Altered surface membrane glycoproteins in vinca alkaloid resistant human leukemic lymphoblasts;Beck;Cancer Research,1979

5. Influenza virus H1N1 activates platelets through Fcγ RIIA signaling and thrombin generation;Boilard;Blood,2014

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3