Change of intestinal microbiota in mice model of bronchopulmonary dysplasia

Author:

Fan Tianqun1,Lu Ling1,Jin Rong1,Sui Aihua2,Guan Renzheng1,Cui Fengjing1,Qu Zhenghai1,Liu Dongyun1

Affiliation:

1. Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China

2. Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China

Abstract

Background Gut microbiota has been proposed to be related to the pathogenesis of pulmonary diseases such as asthma and lung cancer, according to the gut-lung axis. However, little is known about the roles of gut microbiota in the pathogenesis of bronchopulmonary dysplasia (BPD). This study was designed to investigate the changes of gut microbiota in neonatal mice with BPD. Methods BPD model was induced through exposure to high concentration of oxygen. Hematoxylin and eosin (H&E) staining was utilized to determine the modeling efficiency. Stool samples were collected from the distal colon for the sequencing of V3–V4 regions of 16S rRNA, in order to analyze the gut microbiota diversity. Results Alpha diversity indicated that there were no statistical differences in the richness of gut microbiota between BPD model group and control group on day 7, 14 and 21. Beta diversity analysis showed that there were statistical differences in the gut microbiota on day 14 (R = 0.368, p = 0.021). Linear discriminant analysis effect size (LEfSe) showed that there were 22 markers with statistical differences on day 14 (p < 0.05), while those on day 7 and 21 were 3 and 4, respectively. Functional prediction analysis showed that the top three metabolic pathways were signal transduction (PFDR = 0.037), glycan biosynthesis and metabolism (PFDR = 0.032), and metabolism of terpenoids and polyketides (PFDR = 0.049). Conclusions BPD mice showed disorder of gut microbiota, which may involve specific metabolic pathways in the early stage. With the progression of neonatal maturity, the differences of the gut microbiota between the two groups would gradually disappear.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3