A model of multiple tumor marker for lymph node metastasis assessment in colorectal cancer: a retrospective study

Author:

Fu Jiangping123,Tu Mengjie1,Zhang Yin3,Zhang Yan4,Wang Jiasi5ORCID,Zeng Zhaoping1,Li Jie1,Zeng Fanxin1

Affiliation:

1. Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China

2. National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Guangxi Zhuang Autonomous Region, China

3. Department of Oncology, Dazhou Central Hospital, Dazhou, Sichuan, China

4. Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Sichuan, China

5. Department of Clinical Laboratory, Dazhou Central Hospital, Dazhou, Sichuan, China

Abstract

Background Assessment of colorectal cancer (CRC) lymph node metastasis (LNM) is critical to the decision of surgery, prognosis, and therapy strategy. In this study, we aimed to develop and validate a multiple tumor marker nomogram for predicting LNM in CRC patients. Methods A total of 674 patients who met the inclusion criteria were collected and randomly divided into primary cohort and internal test cohort at a ratio of 7:3. An external test cohort enrolled 178 CRC patients from the West China Hospital. Clinicopathologic variables were obtained from electronic medical records. The least absolute shrinkage and selection operator (LASSO) and interquartile range analysis were carried out for variable dimensionality reduction and feature selection. Multivariate logistic regression analysis was conducted to develop predictive models of LNM. The performance of the established models was evaluated by the receiver operating characteristic (ROC) curve, calibration belt, and clinical usefulness. Results Based on minimum criteria, 18 potential features were reduced to six predictors by LASSO and interquartile range in the primary cohort. The model demonstrated good discrimination and ROC curve (AUC = 0.721 in the internal test cohort, AUC = 0.758 in the external test cohort) in LNM assessment. Good calibration was shown for the probability of CRC LNM in the internal and external test cohorts. Decision curve analysis illustrated that multi-tumor markers nomogram was clinically useful. Conclusions The study proposed a reliable nomogram that could be efficiently and conveniently utilized to facilitate the assessment of individually-tailored LNM in patients with CRC, complementing imaging and biopsy tests.

Funder

National Natural Science Foundation of China

Innovative Scientific Research Project of Medical Youth in Sichuan Province

Scientific Research Fund of Technology Bureau in Dazhou

Health Commission of Sichuan Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3