Variation in the reproductive quality of honey bee males affects their age of flight attempt

Author:

Metz Bradley N.1,Tarpy David R.1

Affiliation:

1. Applied Ecology, North Carolina State University, Raleigh, NC, United States of America

Abstract

Background Honey bee males (drones) exhibit life histories that enable a high potential for pre- or post-copulatory sperm competition. With a numerical sex ratio of ∼11,000 drones for every queen, they patrol flyways and congregate aerially to mate on the wing. However, colonies and in fact drones themselves may benefit from a relative lack of competition, as queens are highly polyandrous, and colonies have an adaptive advantage when headed by queens that are multiply mated. Previous research has shown that larger drones are more likely to be found at drone congregation areas, more likely to mate successfully, and obtain a higher paternity share. However, the reproductive quality and size of drones varies widely within and among colonies, suggesting adaptive maintenance of drone quality variation at different levels of selection. Methods We collected drones from six colony sources over the course of five days. We paint marked and individually tagged drones after taking body measurements at emergence and then placed the drones in one of two foster colonies. Using an entrance cage, we collected drones daily as they attempted flight. We collected 2,420 drones live or dead, analyzed 1,891 for attempted flight, collected emergence data on 207 drones, and dissected 565 upon capture to assess reproductive maturity. We measured drone body mass, head width, and thorax width at emergence, and upon dissection we further measured thorax mass, seminal vesicle length, mucus gland length, sperm count, and sperm viability from the seminal vesicles. Results We found that drones that were more massive at emergence were larger and more fecund upon capture, suggesting that they are of higher reproductive quality and therefore do not exhibit a trade-off between size and fecundity. However, smaller drones tended to attempt initial flight at a younger age, which suggests a size trade-off not with fecundity but rather developmental maturation. We conclude that smaller drones may take more mating flights, each individually with a lower chance of success but thereby increasing their overall fitness. In doing so, the temporal spread of mating attempts of a single generation of drones within a given colony increases colony-level chances of mating with nearby queens, suggesting an adaptive rationale for high variation among drone reproductive quality within colonies.

Funder

US Army Research Laboratory

USDA National Institute of Food and Agriculture

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference73 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3