The Microphenotron: a novel method for screening plant growth-promoting rhizobacteria

Author:

Raheem Asif12ORCID,Ali Basharat1ORCID

Affiliation:

1. Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan

2. Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta, Quetta, Balochistan, Pakistan

Abstract

Background The ‘Microphenotron’ is an automated screening platform that uses 96-well microtiter plates to test the response of seedlings to natural products. This system allows monitoring the phenotypic effect of a large number of small molecules. Here, this model system was used to study the effect of phytohormones produced by plant growth-promoting rhizobacteria (PGPR) on the growth of wild-type and mutant lines of Arabidopsis thaliana. Methods In the present study, high-throughput screening based on ‘Microphenotron’ was used to screen PGPRs. Rhizobacteria were isolated from the rhizosphere of Acacia Arabica, which was growing in saline habitats. The phylogeny of these rhizobacteria was determined by 16S rRNA gene sequencing. Strains were screened for plant growth-promoting traits such as auxin production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and phosphate solubilization. Ultra-Performance Liquid Chromatography (UPLC) was used to detect the presence of different indolic compounds. Finally, PGPR were evaluated to enhance the growth of A. thaliana in the ‘Microphenotron’ system and pot trials. Results Selected rhizobacteria strains showed positive results for multiple plant-growth promoting traits. For instance, strain (S-6) of Bacillus endophyticus exhibited the highest ACC-deaminase activity. UPLC analysis indicated the presence of different indolic compounds in bacterial extracts that included indole lactic acid (ILA), indole carboxylic acid (ICA), and indole-3-acetic acid (IAA). Two strains (S-7 and S-11) of Psychrobacter alimentarius produced the most IAA, ICA and ILA. A screening bioassay through 96-well microtiter plates with wild-type Col. N6000 showed an increase in root growth and proliferation. The highest twofold increase was recorded in root growth with B. thuringiensis S-26 and B. thuringiensis S-50. In pot trials, mutant lines of A. thaliana impaired for auxin signaling showed that B. endophyticus S-6, Psy. alimenterius S-11, Enterobacter asburiae S-24 and B. thuringiensis S-26 used auxin signaling for plant growth promotion. Similarly, for ethylene insensitive mutant lines (ein2.5 and etr1), Prolinoborus fasciculus S-3, B. endophyticus S-6, Psy. alimenterius S-7, E. asburiae S-24, and B. thuringiensis S-26 showed the involvement of ethylene signaling. However, the growth promotion pattern for most of the strains indicated the involvement of other mechanisms in enhancing plant growth. The result of Microphenotron assays generally agreed with pot trials with mutant and wild type A. thaliana varieties. Bacterial strains that induced the highest growth response by these cultivars in the ‘Microphenotron’ promoted plant growth in pot trials. This suggests that Microphenotron can accelerate the evaluation of PGPR for agricultural applications.

Funder

The Higher Education Commission of Pakistan

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3