Affiliation:
1. College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
2. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
3. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
Abstract
Background
Indigo-containing plant tissues change blue after a freezing treatment, which is accompanied by changes in indigo and its related compounds. Phaius flavus is one of the few monocot plants containing indigo. The change to blue after freezing was described to explore the biosynthesis of indigo in P. flavus.
Methods
In this study, we surveyed the dynamic change of P. flavus flower metabolomics and transcriptomics.
Results
The non-targeted metabolomics and targeted metabolomics results revealed a total of 98 different metabolites, the contents of indole, indican, indigo, and indirubin were significantly different after the change to blue from the freezing treatment. A transcriptome analysis screened ten different genes related to indigo upstream biosynthesis, including three anthranilate synthase genes, two phosphoribosyl-anthranilate isomerase genes, one indole-3-glycerolphosphate synthase gene, five tryptophan synthase genes. In addition, we further candidate 37 cytochrome P450 enzyme genes, one uridine diphosphate glucosyltransferase gene, and 24 β-D-glucosidase genes were screened that may have participated in the downstream biosynthesis of indigo. This study explained the changes of indigo-related compounds at the metabolic level and gene expression level during the process of P. flavus under freezing and provided new insights for increasing the production of indigo-related compounds in P. flavus. In addition, transcriptome sequencing provides the basis for functional verification of the indigo biosynthesis key genes in P. flavus.
Funder
National Key R&D Program of China
Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences
Opening project of Shanghai Key Laboratory of Plant Functional Genomics and Resources
Disciplinary Professional Construction Project of College of Arts and College of Landscape Architecture
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献