Random allogeneic blood transfusion in pigs: characterisation of a novel experimental model

Author:

Ziebart Alexander1,Schaefer Moritz M.1,Thomas Rainer1,Kamuf Jens1,Garcia-Bardon Andreas1,Möllmann Christian1,Ruemmler Robert1,Heid Florian1,Schad Arno2,Hartmann Erik K.1

Affiliation:

1. Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany

2. Institute of Pathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany

Abstract

BackgroundOrgan cross-talk describes interactions between a primary affected organ and a secondarily injured remote organ, particularly in lung-brain interactions. A common theory is the systemic distribution of inflammatory mediators that are released by the affected organ and transferred through the bloodstream. The present study characterises the baseline immunogenic effects of a novel experimental model of random allogeneic blood transfusion in pigs designed to analyse the role of the bloodstream in organ cross-talk.MethodsAfter approval of the State and Institutional Animal Care Committee, 20 anesthetized pig were randomized in a donor and an acceptor (eachn = 8): the acceptor animals each received high-volume whole blood transfusion from the donor (35–40 ml kg−1). Four animals received balanced electrolyte solution instead of blood transfusion (control group;n = 4). Afterwards the animals underwent extended cardiorespiratory monitoring for eight hours. Post mortem assessment included pulmonary, cerebral and systemic mediators of early inflammatory response (IL-6, TNF-alpha, iNOS), wet to dry ratio, and lung histology.ResultsNo adverse events or incompatibilities occurred during the blood transfusion procedures. Systemic cytokine levels and pulmonary function were unaffected. Lung histopathology scoring did not display relevant intergroup differences. Neither within the lung nor within the brain an up-regulation of inflammatory mediators was detected. High volume random allogeneic blood transfusion in pigs neither impaired pulmonary integrity nor induced systemic, lung, or brain inflammatory response.ConclusionThis approach can represent a novel experimental model to characterize the blood-bound transmission in remote organ injury.

Funder

Mainz Research School of Translational Biomedicine

Johannes Gutenberg University, Mainz, Germany

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3