Functional group based marine ecosystem assessment for the Bay of Biscay via elasticity analysis

Author:

Hosack Geoffrey R.1,Trenkel Verena M.2

Affiliation:

1. Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia

2. Ifremer, Nantes, France

Abstract

The transitory and long-term elasticities of the Bay of Biscay ecosystem to density-independent and density-dependent influences were estimated within a state space model that accounted for both process and observation uncertainties. A functional group based model for the Bay of Biscay fish ecosystem was fit to time series obtained from scientific survey and commercial catch and effort data. The observation model parameters correspond to the unknown catchabilities and observation error variances that vary across the commercial fisheries and fishery-independent scientific surveys. The process model used a Gompertz form of density dependence, which is commonly used for the analysis of multivariate ecological time series, with unknown time-varying fishing mortalities. Elasticity analysis showed that the process model parameters are directly interpretable in terms of one-year look-ahead prediction elasticities, which measure the proportional response of a functional group in the next year given a proportional change to a variable or parameter in the current year. The density dependent parameters were also shown to define the elasticities of the long term means or quantiles of the functional groups to changes in fishing pressure. Evidence for the importance of indirect effects, mediated by density dependence, in determining the ecosystem response of the Bay of Biscay to changes in fishing pressure is presented. The state space model performed favourably in an assessment of model adequacy that compared observations of catch per unit effort against cross-validation predictive densities blocked by year.

Funder

Eranet Cofasp project PrimeTradeOffs

Evhoe scientific survey

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference79 articles.

1. Review of state-space models for fisheries science;Aeberhard;Annual Review of Statistics and Its Application,2018

2. Measuring the adaptability of fleet segments to a fishing ban: the case of the Bay of Biscay anchovy fishery;Andres;Aquatic Living Resources,2012

3. Stability in marine fish communities;Bell;Marine Ecology Progress Series,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3