Short-term effects of thinning on the understory natural environment of mixed broadleaf-conifer forest in Changbai Mountain area, Northeast China

Author:

Liu Qiang12,Sun Yue1,Wang Gerong1,Cheng Fushan1,Xia Fucai12

Affiliation:

1. Forestry College, Beihua University, Jilin, Jilin, China

2. Key Laboratory of State Forestry Administration on Conservation and Efficient Utilization of Characteristic Forest Resources of Changbai Mountain, Beihua University, Jilin, Jilin, China

Abstract

Background The understory natural environment is critical in affecting the succession and recovery process of vegetation, stand structure, and species composition of forest. The thinning intensity could significantly change the forest microclimates and soil properties, therefore, to analyze the effects of thinning intensity on the understory natural environment of forest is of important significance for promoting the ecological benefits of thinning. Methods A total of 16 fixed sample plots with different thinning intensities were established in the mixed broadleaf-conifer forest in Jiaohe, situated in Changbai Mountain area, Northeast China, and the forest microclimates and soil properties were investigated after 4 years since the establishment of the sample plots. Results The results showed that the high intensity thinning significantly decreased the leaf area index from 4.13 (unthinned plot) to 2.21 (high intensity thinned plot), and the air temperature was increased by thinning from May to July. Comparing with the unthinned plot, thinning caused a rise of temperature (ranging from 2.11 to 6.74 °C, depending on the intensity of thinning) in May. However, it showed cooling effect in September and October. Besides, the air moisture of thinning plots was lower than the control plot in May and October, when the density of leaves is lower in the forest, and it even decreased 20.27% after thinning. The thinning intensity had no significantly effect on water content and organic carbon in forest soils, and only the bulk density in the top-layer soils in high intensity thinning plot was remarkably increased. Total nitrogen in soil was increased by different intensities of thinning, and the availability of nutrients for nitrogen, phosphorus and potassium in some soils were also affected.

Funder

National Science and technology support program

Promotion Project of State Forestry Administration

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3