Antibacterial immune functions of subadults and adults in a semelparous spider

Author:

Rádai Zoltán,Kiss Péter,Nagy Dávid,Barta Zoltán

Abstract

Although capacity to mount an efficient immune response plays a critical role in individuals’ survival, its dynamics across ontogenetic stages is still largely unexplored. Life stage-dependent variation in the encountered diversity and prevalence of parasites were proposed to contribute to stage-dependent changes in immunity, but differences in life history objectives between developmental stages may also lead to stage-specific changes in efficiency of given immune mechanisms. The reason for this is that juveniles and subadults are unable to reproduce, therefore they invest resources mainly into survival, while adults have to partition their resources between survival and reproduction. The general trade-off between somatic maintenance and reproductive effort is expected to impair immune function. Especially so in semelparous organisms that only reproduce once throughout their lifetime, hence they do not face the trade-off between current and future reproduction. We hypothesised that in a semelparous species individuals would be characterised by decreased investment into somatic maintenance after maturation, in order to maximise their reproductive output. Accordingly, we predicted that (1) elements of somatic maintenance, such as immunity, should be relatively weaker in adults in comparison to subadults, and (2) increased reproductive investment in adults should be associated with lower immune efficiency. We quantified two markers of immunity in subadult and adult individuals of the semelparous wolf spiderPardosa agrestis(Westring, 1861), namely bacterial growth inhibition power and bacterial cell wall lytic activity. We found that subadults showed significantly higher cell wall lytic activity than adults, but the two life stages did not differ in their capacity to inhibit bacterial growth. Also, we found weaker immune measures in mated females compared to virgins. Furthermore, in mated females bacterial growth inhibition power was negatively associated with fecundity.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3