Author:
Anderson Caitlin L.,Kasumovic Michael M.
Abstract
Cognitive functioning is vital for enabling animals of all taxa to optimise their chances of survival and reproductive success. Learning and memory in particular are drivers of many evolutionary processes. In this study, we examine how developmental plasticity can affect cognitive ability by exploring the role the early social environment has on problem solving ability and learning of female black field crickets, Teleogryllus commodus. We used two learning paradigms, an analog of the Morris water maze and a novel linear maze, to examine cognitive differences between individuals reared in two acoustic treatments: silence or calling. Although there was no evidence of learning or memory, individuals that took longer to mature solved the Morris water maze more quickly. Our results suggest that increased investment into cognitive development is likely associated with increased development time during immature stages. Inconsistent individual performance and motivation during the novel linear maze task highlights the difficulties of designing ecologically relevant learning tasks within a lab setting. The role of experimental design in understanding cognitive ability and learning in more natural circumstances is discussed.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献