Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

Author:

Lucia Alejandro1,Toloza Ariel Ceferino1,Guzmán Eduardo2,Ortega Francisco2,Rubio Ramón G.23

Affiliation:

1. Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CONICET), Villa Martelli, Buenos Aires, Argentina

2. Departamento de Química Física, Universidad Complutense de Madrid, Madrid, España

3. Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, España

Abstract

BackgroundEssential oil components (EOCs) are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control.MethodsMicellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS) experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using anex vivoimmersion test.ResultsThe poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%), 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407). These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole,α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%.DiscussionSince these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

Funder

MINECO under grants

EU under Marie Curie ITN CoWet

COST Actions

CAECE University and Agencia de Promoción Científica y Tecnológica (ANPCyT)

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3