The evolution of logic circuits for the purpose of protein contact map prediction

Author:

Chapman Samuel D.1,Adami Christoph2,Wilke Claus O.3,B KC Dukka1

Affiliation:

1. Department of Comptuational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA

2. Department of Microbiology and Molecular Genetics and Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

3. Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA

Abstract

Predicting protein structure from sequence remains a major open problem in protein biochemistry. One component of predicting complete structures is the prediction of inter-residue contact patterns (contact maps). Here, we discuss protein contact map prediction by machine learning. We describe a novel method for contact map prediction that uses the evolution of logic circuits. These logic circuits operate on feature data and output whether or not two amino acids in a protein are in contact or not. We show that such a method is feasible, and in addition that evolution allows the logic circuits to be trained on the dataset in an unbiased manner so that it can be used in both contact map prediction and the selection of relevant features in a dataset.

Funder

National Science Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A brief review on DNA storage, compression, and digitalization;Nano Communication Networks;2022-03

2. On the efficient digital code representation in DNA-based data storage;Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication;2020-09-23

3. Artificial Intelligence and Bioinformatics;A Guided Tour of Artificial Intelligence Research;2020

4. Episode forecasting in bipolar disorder: Is energy better than mood?;Bipolar Disorders;2018-01-22

5. Evolving autonomous learning in cognitive networks;Scientific Reports;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3