Summer diatom blooms in the eastern North Pacific gyre investigated with a long-endurance autonomous surface vehicle

Author:

Anderson Emily E.1,Wilson Cara2,Knap Anthony H.3,Villareal Tracy A.1ORCID

Affiliation:

1. Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA

2. National Marine Fisheries, National Oceanic and Atmospheric Administration, Monterey, CA, USA

3. Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA

Abstract

Satellite chlorophyll a (chl a) observations have repeatedly noted summertime phytoplankton blooms in the North Pacific subtropical gyre (NPSG), a region of open ocean that is far removed from any land-derived or Ekman upwelling nutrient sources. These blooms are dominated by N2-fixing diatom-cyanobacteria associations of the diatom genera Rhizosolenia Brightwell and Hemiaulus Ehrenberg. Their nitrogen fixing endosymbiont, Richelia intracellularis J.A. Schmidt, is hypothesized to be critical to the development of blooms in this nitrogen limited region. However, due to the remote location and unpredictable duration of the summer blooms, prolonged in situ observations are rare outside of the Station ALOHA time-series off of Hawai’i. In summer, 2015, a proof-of-concept mission using the autonomous vehicle, Honey Badger (Wave Glider SV2; Liquid Robotics, a Boeing company, Sunnyvale, CA, USA), collected near-surface (<20 m) observations in the NPSG using hydrographic, meteorological, optical, and imaging sensors designed to focus on phytoplankton abundance, distribution, and physiology of this bloom-forming region. Hemiaulus and Rhizosolenia cell abundance was determined using digital holography for the entire June–November mission. Honey Badger was not able to reach the 30°N subtropical front region where most of the satellite chl a blooms have been observed, but near-real time navigational control allowed it to transect two blooms near 25°N. The two taxa did not co-occur in large numbers, rather the blooms were dominated by either Hemiaulus or Rhizosolenia. The August 2–4, 2015 bloom was comprised of 96% Hemiaulus and the second bloom, August 15–17, 2015, was dominated by Rhizosolenia (75%). The holograms also imaged undisturbed, fragile Hemiaulus aggregates throughout the sampled area at ∼10 L−1. Aggregated Hemiaulus represented the entire observed population at times and had a widespread distribution independent of the summer export pulse, a dominant annual event suggested to be mediated by aggregate fluxes. Aggregate occurrence was not consistent with a density dependent formation mechanism and may represent a natural growth form in undisturbed conditions. The photosynthetic potential index (Fv:Fm) increased from ∼0.4 to ∼0.6 during both blooms indicating a robust, active phytoplankton community in the blooms. The diel pattern of Fv:Fm (nocturnal maximum; diurnal minimum) was consistent with macronutrient limitation throughout the mission with no evidence of Fe-limitation despite the presence of nitrogen fixing diatom-diazotroph assemblages. During the 5-month mission, Honey Badger covered ∼5,690 km (3,070 nautical miles), acquired 9,336 holograms, and reliably transmitted data onshore in near real-time. Software issues developed with the active fluorescence sensor that terminated measurements in early September. Although images were still useful at the end of the mission, fouling of the LISST-Holo optics was considerable, and appeared to be the most significant issue facing deployments of this duration.

Funder

Liquid Robotics

National Science Foundation award OCE

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3