Affiliation:
1. College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
Abstract
The uses of fluorescent microscopy and fluorescent probes, such as the metabolically activated probe CellTracker™ Green CMFDA (CTG), have become common in studies of living Foraminifera. This metabolic requirement, as well as the relatively quick production of the fluorescent reaction products, makes CTG a prime candidate for determining mortality in bioassay and other laboratory experiments. Previous work with the foraminiferAmphistegina gibbosa, which hosts diatom endosymbionts, has shown that the species is capable of surviving both acute chemical exposure and extended periods of total darkness by entering a low-activity dormant state. This paper explores the use of CTG and fluorescent microscopy to determine mortality in such experiments, as well as to explore the physiology of dormant foraminifers. The application of CTG was found to be complicated by the autofluorescence of the diatom symbionts, which masks the signal of the CTG, as well as by interactions between CTG and propylene glycol, a chemical of interest known to cause dormancy. These complications necessitated adapting methods from earlier studies using CTG. Here we present observations on CTG fluorescence and autofluorescence inA. gibbosafollowing both chemical exposure and periods of total darkness. While CTG can indicate vital activity in dormant foraminifers, complications include underestimates of total survival and recovery, and falsely indicating dead individuals as live due to rapid microbial colonization. Nonetheless, the brightness of the CTG signal in dormant individuals exposed to propylene glycol supports previously published results of survival patterns inA. gibbosa. Observations of CTG fluorescence in individuals kept for extended periods in aphotic conditions indicate uptake of CTG may begin within 30 min of exposure to light, suggesting darkness-induced dormancy and subsequent recovery can occur on short time scales. These results suggest that CTG accurately reflects changes associated with dormancy, and can be useful in laboratory experiments utilizing symbiont-bearing foraminifers.
Funder
University of South Florida College of Marine Science and the Gulf Oceanographic Trust Endowed Fellowship
St. Petersburg Downtown Partnership Endowed Fellowship
Linton Tibbetts Graduate Fellowship
Cushman Foundation’s Joseph A. Cushman Award for Student Travel
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献