Seasonality and trend prediction of scarlet fever incidence in mainland China from 2004 to 2018 using a hybrid SARIMA-NARX model

Author:

Wang Yongbin1,Xu Chunjie2,Wang Zhende1,Yuan Juxiang1

Affiliation:

1. School of Public Health, North China University of Science and Technology, Tangshan, China

2. School of Public Health, Capital Medical University, Beijing, China

Abstract

Background Scarlet fever is recognized as being a major public health issue owing to its increase in notifications in mainland China, and an advanced response based on forecasting techniques is being adopted to tackle this. Here, we construct a new hybrid method incorporating seasonal autoregressive integrated moving average (SARIMA) with a nonlinear autoregressive with external input(NARX) to analyze its seasonality and trend in order to efficiently prevent and control this re-emerging disease. Methods Four statistical models, including a basic SARIMA, basic nonlinear autoregressive (NAR) method, traditional SARIMA-NAR and new SARIMA-NARX hybrid approaches, were developed based on scarlet fever incidence data between January 2004 and July 2018 to evaluate its temporal patterns, and their mimic and predictive capacities were compared to discover the optimal using the mean absolute percentage error, root mean square error, mean error rate, and root mean square percentage error. Results The four preferred models identified were comprised of the SARIMA(0,1,0)(0,1,1)12, NAR with 14 hidden neurons and five delays, SARIMA-NAR with 33 hidden neurons and five delays, and SARIMA-NARX with 16 hidden neurons and 4 delays. Among which presenting the lowest values of the aforementioned indices in both simulation and prediction horizons is the SARIMA-NARX method. Analyses from the data suggested that scarlet fever was a seasonal disease with predominant peaks of summer and winter and a substantial rising trend in the scarlet fever notifications was observed with an acceleration of 9.641% annually, particularly since 2011 with 12.869%, and moreover such a trend will be projected to continue in the coming year. Conclusions The SARIMA-NARX technique has the promising ability to better consider both linearity and non-linearity behind scarlet fever data than the others, which significantly facilitates its prevention and intervention of scarlet fever. Besides, under current trend of ongoing resurgence, specific strategies and countermeasures should be formulated to target scarlet fever.

Funder

North China University of Science and Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference33 articles.

1. Comparison of time series models for predicting campylobacteriosis risk in New Zealand;Al-Sakkaf;Zoonoses and Public Health,2014

2. Re-emergence of scarlet fever: old players return?;Andrey;Expert Review of Anti-Infective Therapy,2016

3. Constantly high incidence of scarlet fever in Germany;Brockmann;Lancet Infectious Diseases,2018

4. Epidemiological features and control of an outbreak of scarlet fever in a Perth primary school;Feeney;Communicable Diseases Intelligence Quarterly Report,2005

5. Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan;He;Scientific Reports,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3