The feasibility of predicting ground reaction forces during running from a trunk accelerometry driven mass-spring-damper model

Author:

Nedergaard Niels J.12,Verheul Jasper1,Drust Barry1,Etchells Terence3,Lisboa Paulo3,Robinson Mark A.1,Vanrenterghem Jos12

Affiliation:

1. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom

2. Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

3. Department of Applied Mathematics, Liverpool John Moores University, Liverpool, United Kingdom

Abstract

Background Monitoring the external ground reaction forces (GRF) acting on the human body during running could help to understand how external loads influence tissue adaptation over time. Although mass-spring-damper (MSD) models have the potential to simulate the complex multi-segmental mechanics of the human body and predict GRF, these models currently require input from measured GRF limiting their application in field settings. Based on the hypothesis that the acceleration of the MSD-model’s upper mass primarily represents the acceleration of the trunk segment, this paper explored the feasibility of using measured trunk accelerometry to estimate the MSD-model parameters required to predict resultant GRF during running. Methods Twenty male athletes ran at approach speeds between 2–5 m s−1. Resultant trunk accelerometry was used as a surrogate of the MSD-model upper mass acceleration to estimate the MSD-model parameters (ACCparam) required to predict resultant GRF. A purpose-built gradient descent optimisation routine was used where the MSD-model’s upper mass acceleration was fitted to the measured trunk accelerometer signal. Root mean squared errors (RMSE) were calculated to evaluate the accuracy of the trunk accelerometry fitting and GRF predictions. In addition, MSD-model parameters were estimated from fitting measured resultant GRF (GRFparam), to explore the difference between ACCparam and GRFparam. Results Despite a good match between the measured trunk accelerometry and the MSD-model’s upper mass acceleration (median RMSE between 0.16 and 0.22 g), poor GRF predictions (median RMSE between 6.68 and 12.77 N kg−1) were observed. In contrast, the MSD-model was able to replicate the measured GRF with high accuracy (median RMSE between 0.45 and 0.59 N kg−1) across running speeds from GRFparam. The ACCparam from measured trunk accelerometry under- or overestimated the GRFparam obtained from measured GRF, and generally demonstrated larger within parameter variations. Discussion Despite the potential of obtaining a close fit between the MSD-model’s upper mass acceleration and the measured trunk accelerometry, the ACCparam estimated from this process were inadequate to predict resultant GRF waveforms during slow to moderate speed running. We therefore conclude that trunk-mounted accelerometry alone is inappropriate as input for the MSD-model to predict meaningful GRF waveforms. Further investigations are needed to continue to explore the feasibility of using body-worn micro sensor technology to drive simple human body models that would allow practitioners and researchers to estimate and monitor GRF waveforms in field settings.

Funder

Football Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, UK

UEFA Research Grant Programme 2014

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference39 articles.

1. Training load and player monitoring in high-level football: current practice and perceptions;Akenhead;International Journal of Sports Physiology and Performance,2016

2. Elastic energy stores in running vertebrates;Alexander;American Zoologist,1984

3. Mechanical properties and function of the paw pads of some mammals;Alexander;Journal of Zoology,1986

4. The spring-mass model for running and hopping;Blickhan;Journal of Biomechanics,1989

5. Calculation of vertical ground reaction force estimates during running from positional data;Bobbert;Journal of Biomechanics,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3