Identification of potential crucial genes and pathways associated with vein graft restenosis based on gene expression analysis in experimental rabbits

Author:

Liu Qiang1,Yin Xiujie1,Li Mingzhu1,Wan Li2,Liu Liqiao3,Zhong Xiang1,Liu Zhuoqi3,Wang Qun2

Affiliation:

1. Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China

2. Department of Cardiovascular Surgery, Cardiovascular Research Institute Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China

3. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China

Abstract

Occlusive artery disease (CAD) is the leading cause of death worldwide. Bypass graft surgery remains the most prevalently performed treatment for occlusive arterial disease, and veins are the most frequently used conduits for surgical revascularization. However, the clinical efficacy of bypass graft surgery is highly affected by the long-term potency rates of vein grafts, and no optimal treatments are available for the prevention of vein graft restenosis (VGR) at present. Hence, there is an urgent need to improve our understanding of the molecular mechanisms involved in mediating VGR. The past decade has seen the rapid development of genomic technologies, such as genome sequencing and microarray technologies, which will provide novel insights into potential molecular mechanisms involved in the VGR program. Ironically, high throughput data associated with VGR are extremely scarce. The main goal of the current study was to explore potential crucial genes and pathways associated with VGR and to provide valid biological information for further investigation of VGR. A comprehensive bioinformatics analysis was performed using high throughput gene expression data. Differentially expressed genes (DEGs) were identified using the R and Bioconductor packages. After functional enrichment analysis of the DEGs, protein–protein interaction (PPI) network and sub-PPI network analyses were performed. Finally, nine potential hub genes and fourteen pathways were identified. These hub genes may interact with each other and regulate the VGR program by modulating the cell cycle pathway. Future studies focusing on revealing the specific cellular and molecular mechanisms of these key genes and pathways involved in regulating the VGR program may provide novel therapeutic targets for VGR inhibition.

Funder

National Natural Science Foundation of China

Education Department Foundation of Jiangxi Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3