A more reliable species richness estimator based on the Gamma–Poisson model

Author:

Chiu Chun-Huo1

Affiliation:

1. Department of Agronomy, National Taiwan University, Taipei, Taiwan

Abstract

BackgroundAccurately estimating the true richness of a target community is still a statistical challenge, particularly in highly diverse communities. Due to sampling limitations or limited resources, undetected species are present in many surveys and observed richness is an underestimate of true richness. In the literature, methods for estimating the undetected richness of a sample are generally divided into two categories: parametric and nonparametric estimators. Imposing no assumptions on species detection rates, nonparametric methods demonstrate robust statistical performance and are widely used in ecological studies. However, nonparametric estimators may seriously underestimate richness when species composition has a high degree of heterogeneity. Parametric approaches, which reduce the number of parameters by assuming that species-specific detection probabilities follow a given statistical distribution, use traditional statistical inference to calculate species richness estimates. When species detection rates meet the model assumption, the parametric approach could supply a nearly unbiased estimator. However, the infeasibility and inefficiency of solving maximum likelihood functions limit the application of parametric methods in ecological studies when the model assumption is violated, or the collected data is sparse.MethodTo overcome these estimating challenges associated with parametric methods, an estimator employing the moment estimation method instead of the maximum likelihood estimation method is proposed to estimate parameters based on a Gamma-Poisson mixture model. Drawing on the concept of the Good-Turing frequency formula, the proposed estimator only uses the number of singletons, doubletons, and tripletons in a sample for undetected richness estimation.ResultsThe statistical behavior of the new estimator was evaluated by using real and simulated data sets from various species abundance models. Simulation results indicated that the new estimator reduces the bias presented in traditional nonparametric estimators, presents more robust statistical behavior compared to other parametric estimators, and provides confidence intervals with better coverage among the discussed estimators, especially in assemblages with high species composition heterogeneity.

Funder

Taiwan Ministry of Science and Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference27 articles.

1. Diversity and abundance of some ground-dwelling invertebrates in plantation vs. native forests in Tasmania, Australia;Bonham;Forest Ecology and Management,2002

2. Estimating the number of species: a review;Bunge;Journal of the American statistical Association,1993

3. Estimating the number of species in microbial diversity studies;Bunge;Annual Review of Statistics and its Application,2014

4. Estimation of the size of a closed population when capture probabilities vary among animals;Burnham;Biometrika,1978

5. Robust estimation of population size when capture probabilities vary among animals;Burnham;Ecology,1979

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Richness Estimator Based on Integrated Data;Mathematics;2023-09-02

2. A species richness estimator for sample‐based incidence data sampled without replacement;Methods in Ecology and Evolution;2023-06-06

3. Theory and application of an improved species richness estimator;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3