Relationship between the roots of Hippophae rhamnoides at different stump heights and the root microenvironment in feldspathic sandstone areas

Author:

Liu Lu1,Guo Yuefeng1,Liu Xiaoyu1,Yao Yunfeng1,Qi Wei2

Affiliation:

1. Inner Mongolia Agricultural University, Hohhot, China

2. Inner Mongolia Autonomous Region Water Conservancy Development Center, Hohhot, China

Abstract

Background To solve the withering of Hippophae rhamnoides plantation in the feldspathic sandstone areas of Inner Mongolia and to promote the regeneration, rejuvenation, and sustainability of H. rhamnoides forests. Methods We stumped aging H. rhamnoides trees at the ground heights of 0, 10, 15, and 20 cm (S1, S2, S3, and S4, respectively) and utilized unstumped trees as the control (CK). We then analyzed the effects of the different stump heights on the roots and the root microenvironment of H. rhamnoides and the relationship between the roots and the root microenvironment in the stumped H. rhamnoides. Results The root fractal features, root branching rate, root length, root soluble proteins, soil moisture content, and soil nutrients among the different treatments were ranked as S3>S2>S1>S4>CK (P < 0.05). The root topological index, root proline, and malondialdehyde among the different treatments were ranked as S3<S2<S1<S4<CK (P < 0.05). The topological indices of S1, S2, S3, S4, and CK were 0.80, 0.86, 0.89, 0.94, and 0.98, respectively, and all were near 1. This result indicated a typical fishtail-shaped branching structure. The root length and root fractal dimensions were primarily affected by the positive correlation of the soil moisture content and the soil organic matter, and the root topological index was primarily affected by the negative correlation of the root proline. Root nutrients were dominant in the changes in the root architecture, while soil moisture and nutrients played supporting roles. These results indicated that stumping can promote plant root growth and root nutrient accumulation, thereby improving soil moisture and the soil nutrient distribution, and the S3 treatment had the greatest impact on the H. rhamnoides roots and root microenvironment. Therefore, the 15 cm stump height treatment should be implemented for withering H. rhamnoides in feldspathic sandstone areas to promote vegetation restoration.

Funder

Autonomous Region Application Technology Research and Development Fund Program

Inner Mongolian Autonomous Region Directly Affiliated Universities Basic Scientific Research Operating Expenses Project

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolian Autonomous Region

Ordos Science and Technology Cooperation Key Project

Inner Mongolian Ordos Application the Research and Technology Development Project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3