Verification of the detachment–transport coupling relationship of rill erosion using colluvium material in steep nonerodible slopes

Author:

Chen Libo,Gao Pengyu,Li Xiaolin,Zhu Qin,Wang Zumei,Shuai Fang,Zhang Yue,Lin Jinshi,Huang Yanhe,Jiang Fangshi

Abstract

The detachment–transport coupling equation by Foster and Meyer is a classical equation that describes the relationship between detachment and transport. The equation quantifies the relationship between sediment loads and soil detachment rates, deepens the understanding of soil erosion and provides a reliable basis for the establishment of an erosion model. However, the applicability of this equation to slopes with gradients greater than 47% is limited. In this work, the detachment–transport coupling relationship is investigated using the colluvium material of Benggang. A nonerodible rill flume 4 m long and 0.12 m wide was adopted. The slope gradient ranged from 27% to 70%, the unit flow discharge ranged from 0.56 × 10−3 to 3.33 × 10−3 m2 s−1, and the sediment transport capacity (Tc) was measured under each slope and discharge combination. The sediment was inputted into the flume according to the predetermined sediment addition rate (from 0% to 100% of Tc), and the detachment rate (Dr) under each combination of the slope and discharge was measured. Dr linearly decreased with increasing sediment loads, which is consistent with the detachment–transport coupling equation by Foster and Meyer. The linear equations can predict the detachment capacity (Dc) and Tc well (Nash–Sutcliffe efficiency coefficient (NSE) = 0.98 for Dc, and NSE = 0.99 for Tc). The detachment–transport coupling equation can adequately predict the Dr (NSE = 0.89). However, its applicability to slopes of <47% (NSE: 0.92–0.96) was greater than that to slopes of ≥47% (NSE: 0.81–0.89), and the predicted Dr under Tc levels of 20% and 40% were higher than the measured values, while the predicted value under a Tc level of 80% was lower than the measured value. In summary, the detachment–transport coupling equation by Foster and Meyer can accurately reflect the negative feedback relationship between detachments and transports along steep-slope fixed beds and is suitable for colluvial deposit research. The results provide a basis for the construction of steep-slope colluvial deposit erosion models. In the future, the study of the hydrodynamic characteristics of sediment transport processes should be strengthened to clarify the detachment–transport effect of flows through hydrodynamics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Fujian Agriculture and Forestry University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3