A conserved role of bam in maintaining metabolic homeostasis via regulating intestinal microbiota in Drosophila

Author:

Wang Jiale1,Zhu Yangyang1,Zhang Chao1,Duan Renjie1,Kong Fanrui1,Zheng Xianrui2,Hua Yongzhi1

Affiliation:

1. Anhui Agricultural University, Hefei, China

2. Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China

Abstract

Background Previous studies have proven that bag-of-marbles (bam) plays a pivotal role in promoting early germ cell differentiation in Drosophila ovary. However, whether it functions in regulating the metabolic state of the host remains largely unknown. Methods We utilized GC-MS, qPCR, and some classical kits to examine various metabolic profiles and gut microbial composition in bam loss-of-function mutants and age-paired controls. We performed genetic manipulations to explore the tissue/organ-specific role of bam in regulating energy metabolism in Drosophila. The DSS-induced mouse colitis was generated to identify the role of Gm114, the mammalian homolog of bam, in modulating intestinal homeostasis. Results We show that loss of bam leads to an increased storage of energy in Drosophila. Silence of bam in intestines results in commensal microbial dysbiosis and metabolic dysfunction of the host. Moreover, recovery of bam expression in guts almost rescues the obese phenotype in bam loss-of-function mutants. Further examinations of mammalian Gm114 imply a similar biological function in regulating the intestinal homeostasis and energy storage with its Drosophila homolog bam. Conclusion Our studies uncover a novel biological function of bam/Gm114 in regulating the host lipid homeostasis.

Funder

Anhui Provincial Natural Science Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3