Density regulation amplifies environmentally induced population fluctuations

Author:

Mutshinda Crispin M.1,Mishra Aditya2,Finkel Zoe V.3,Irwin Andrew J.1

Affiliation:

1. Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada

2. Flatiron Institute, New York, NY, USA

3. Department of Oceanography, Dalhousie University, Halifax, NS, Canada

Abstract

Background Density-dependent regulation is ubiquitous in population dynamics, and its potential interaction with environmental stochasticity complicates the characterization of the random component of population dynamics. Yet, this issue has not received attention commensurate with its relevance for descriptive and predictive modeling of population dynamics. Here we use a Bayesian modeling approach to investigate the contribution of density regulation to population variability in stochastic environments. Methods We analytically derive a formula linking the stationary variance of population abundance/density under Gompertz regulation in a stochastic environment with constant variance to the environmental variance and the strength of density feedback, to investigate whether and how density regulation affects the stationary variance. We examine through simulations whether the relationship between stationary variance and density regulation inferred analytically under the Gompertz model carries over to the Ricker model, widely used in population dynamics modeling. Results The analytical decomposition of the stationary variance under stochastic Gompertz dynamics implies higher variability for strongly regulated populations. Simulation results demonstrate that the pattern of increasing population variability with increasing density feedback found under the Gompertz model holds for the Ricker model as well, and is expected to be a general phenomenon with stochastic population models. We also analytically established and empirically validated that the square of the autoregressive parameter of the Gompertz model in AR(1) form represents the proportion of stationary variance due to density dependence. Discussion Our results suggest that neither environmental stochasticity nor density regulation can alone explain the patterns of population variability in stochastic environments, as these two components of temporal variation interact, with a tendency for density regulation to amplify the magnitude of environmentally induced population fluctuations. This finding has far-reaching implications for population viability. It implies that intense intra-specific resource competition increases the risk of environment-driven population collapse at high density, making opportune harvesting a sensible practice for improving the resistance of managed populations such as fish stocks to environmental perturbations. The separation of density-dependent and density-independent processes will help improve population dynamics modeling, while providing a basis for evaluating the relative importance of these two categories of processes that remains a topic of long-standing controversy among ecologists.

Funder

Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3