Nitrogen and potassium interactions optimized asynchronous spikelet filling and increased grain yield of japonica rice

Author:

Xu Weitao,Li Jianming,Feng Jiancheng,Shao Zhenzhu,Huang Yidan,Hou Wenfeng,Gao Qiang

Abstract

Poor grain filling severely reduces rice yield. Fertilizers play a vital role in regulating grain filling, especially nitrogen (N) and potassium (K). In this field study we aimed to investigate the interactive effects of N and K on the asynchronous filling properties of superior and inferior spikelets of japonica rice. We looked at grain filling under three N rates (0, 90, and 180 kg N ha−1) and three K rates (0, 60, and 120 kg K2O ha−1) during 2020 and 2021. Across two years, the results showed that the combined use of N and K on superior and inferior spikelets significantly increased their weight by 1.29 mg and 2.31 mg, their maximum grain filling rate by 0.24 mg d−1 and 0.07 mg d−1, and their average grain filling rate by 0.21 mg d−1 and 0.06 mg d−1, respectively, in comparison with the control (N0K0) treatment. Likewise, K supply increased the average contribution rate of superior and inferior spikelets to yield by 9.1% and 10.0%, respectively. Correlation analysis showed that the grain filling rate of superior and inferior spikelets was an important factor in determining the spikelet weight, whereas the grain filling time was not. We also found that the 1,000-grain weight mainly increased after increasing the spikelets’ maximum grain filling rate and average grain filling rate. Collectively, these results illustrate that the combined use of N and K can optimize the asynchronous filling of superior and inferior spikelets and, in particular, enhance inferior spikelet weight with higher rice yield.

Funder

Natural Science Foundation of Jilin Province, China

Scientific Research Fund of Education Department of Jilin Provincial

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3