Palaeoecology of the Hiraiso Formation (Miyagi Prefecture, Japan) and implications for the recovery following the end-Permian mass extinction

Author:

Foster William J.12,Godbold Amanda34,Brayard Arnaud5,Frank Anja B.1ORCID,Grasby Stephen E.6,Twitchett Richard J.7,Oji Tatsuo2

Affiliation:

1. Institute for Geology, Universität Hamburg, Hamburg, Germany

2. Nagoya University, Nagoya, Japan

3. University of Southern California, Los Angeles, United States

4. University of Tokyo, Tokyo, Japan

5. Université de Bourgogne, Bourgogne, France

6. Geological Survey of Canada, Calgary, Canada

7. Natural History Museum, London, United Kingdom

Abstract

The Hiraiso Formation of northeast Japan represents an important and under-explored archive of Early Triassic marine ecosystems. Here, we present a palaeoecological analysis of its benthic faunas in order to explore the temporal and spatial variations of diversity, ecological structure and taxonomic composition. In addition, we utilise redox proxies to make inferences about the redox state of the depositional environments. We then use this data to explore the pace of recovery in the Early Triassic, and the habitable zone hypothesis, where wave aerated marine environments are thought to represent an oxygenated refuge. The age of the Hiraiso Formation is equivocal due to the lack of key biostratigraphical index fossils, but new ammonoid finds in this study support an early Spathian age. The ichnofossils from the Hiraiso Formation show an onshore-offshore trend with high diversity and relatively large faunas in offshore transition settings and a low diversity of small ichnofossils in basinal settings. The body fossils do not, however, record either spatial or temporal changes, because the shell beds represent allochthonous assemblages due to wave reworking. The dominance of small burrow sizes, presence of key taxa including Thalassinoides, Rhizocorallium and Holocrinus, presence of complex trace fossils, and both erect and deep infaunal tiering organisms suggests that the benthic fauna represents an advanced stage of ecological recovery for the Early Triassic, but not full recovery. The ecological state suggests a similar level of ecological complexity to late Griesbachian and Spathian communities elsewhere, with the Spathian marking a globally important stage of recovery following the mass extinction. The onshore-offshore distribution of the benthic faunas supports the habitable zone hypothesis. This gradient is, however, also consistent with onshore-offshore ecological gradients known to be controlled by oxygen gradients in modern tropical and subtropical settings. This suggests that the habitable zone is not an oxygenated refuge that is only restricted to anoxic events. The lack of observed full recovery is likely a consequence of a persistent oxygen-limitation (dysoxic conditions), hot Early Triassic temperatures and the lack of a steep temperature/water-depth gradient within the habitable zone.

Funder

British Council and JSPS Summer Programme

Nagoya University Museum funded subsequent fieldwork

Mitacs-JSPS Summer Program Grant

NERC Grant

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference139 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3