Metabolomic responses to the mechanical wounding of Catharanthus roseus’ upper leaves

Author:

Chen Qi1,Jin Yan1,Guo Xiaorui2,Xu Mingyuan3,Wei Guanyun1,Lu Xueyan3,Tang Zhonghua2

Affiliation:

1. School of Life Sciences, Nantong Univesity, Nantong, Jiangsu, China

2. Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, Heilongjiang, China

3. First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China

Abstract

Purpose Plant secondary metabolites are used to treat various human diseases. However, it is difficult to produce a large number of specific metabolites, which largely limits their medicinal applications. Many methods, such as drought and nutrient application, have been used to induce the biosynthetic production of secondary metabolites. Among these secondary metabolite-inducing methods, mechanical wounding maintains the composition of secondary metabolites with little potential risk. However, the effects of mechanical stress have not been fully investigated, and thus this method remains widely unused. Methods In this study, we used metabolomics to investigate the metabolites produced in the upper and lower leaves of Catharanthus roseus in response to mechanical wounding. Results In the upper leaves, 13 different secondary metabolites (three terpenoid indole alkaloids and 10 phenolic compounds) were screened using an orthogonal partial least squares discriminant analysis (OPLS-DA) score plot. The mechanical wounding of different plant parts affected the production of secondary metabolites. Specifically, when lower leaves were mechanically wounded, the upper leaves became a strong source of resources. Conversely, when upper leaves were injured, the upper leaves themselves became a resource sink. Changes in the source-sink relationship reflected a new balance between resource tradeoff and the upregulation or downregulation of certain metabolic pathways. Conclusion Our findings suggest that mechanical wounding to specific plant parts is a novel approach to increase the biosynthetic production of specific secondary metabolites. These results indicate the need for a reevaluation of production practices for secondary metabolites from select commercial plants.

Funder

Research Initiation Funds for the Natural Science Foundation of the Jiangsu Higher Education Institutions

Natural Science Foundation of Jiangsu Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3