Irradiation with carbon ion beams affects soybean nutritional quality in early generations

Author:

Liu Changkai1,Wang Xue12,Li Yansheng1,Chen Heng12,Zhang Qiuying13,Liu Xiaobing1

Affiliation:

1. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Innovation Academy for Seed Design, CAS, Harbin, China

Abstract

As people’s demand for healthy diet increases, improving soybean seed nutritional quality is becoming as important as yield. Carbon ion beam radiation (CIBR) is an effective method to create soybean mutants, and thus breeding cultivars with better seed nutritional quality. In this study, the high-yield soybean line ‘Dongsheng 28’ was used, and three CIBR doses (100, 120, and 140 Gy) were used to explore the characteristics of quality separation and variation in the offspring of early mutant populations. Eleven quality traits, including protein, oil, sucrose, soluble sugar, iron (Fe), manganese (Mn), zinc (Zn), cupper (Cu), daidzin, glycitin, and genistin concentrations were analyzed in the M2 and M3 generations. The results revealed that the range of protein and oil concentration of all three CIBR doses changed by 38.5–42.9% and 18.8–23.8% in the M2 and M3 generations, respectively, while soluble sugar and sucrose concentrations changed by 48.1–123.4 and 22.7–74.7 mg/g, with significant effects by 140 Gy across the two generations. Therefore, around the optimum range, a higher CIBR dose is better for high protein, oil, and sugar varieties selection. In general, irradiation raised isoflavone concentrations, but 140 Gy had an inhibitory effect on isoflavone concentrations in the M3 generation. Although a variety could not be released in the M2 or M3 generation, the results of this study have important guiding significance for the targeted cultivation of specific nutritional quality materials. For instance, a lower irradiation dose is preferable when breeding targets are higher isoflavones and Mn concentrations. It is essential to increase the irradiation dose if the breeding targets contain high levels of protein, oil, sucrose, soluble sugars, Fe, Zn, and Cu.

Funder

National Key R&D Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Irradiation effects on characteristics and ethanol fermentation of maize starch;International Journal of Biological Macromolecules;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3