Tree variability limits the detection of nutrient treatment effects on sap flux density in a northern hardwood forest

Author:

Rice Alexandrea M.12,Garrison-Johnston Mariann T.3,Libenson Arianna J.4,Yanai Ruth D.1

Affiliation:

1. Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States of America

2. Geosciences, University of Massachusetts at Amherst, Amherst, MA, United States of America

3. Ranger School, State University of New York College of Environmental Science and Forestry, Wanakena, NY, United States of America

4. College of Arts and Sciences, University of Vermont, Burlington, VT, United States of America

Abstract

The influence of nutrient availability on transpiration is not well understood, in spite of the importance of transpiration to forest water budgets. Soil nutrients have the potential to affect tree water use through indirect effects on leaf area or stomatal conductance. For example, following addition of calcium silicate to a watershed at Hubbard Brook, in New Hampshire, streamflow was reduced for 3 years, which was attributed to a 25% increase in evapotranspiration associated with increased foliar production. The first objective of this study was to quantify the effect of nutrient availability on sap flux density in a nitrogen, phosphorus, and calcium addition experiment in New Hampshire in which tree diameter growth, foliar chemistry, and soil nutrient availability had responded to treatments. We measured sap flux density in American beech (Fagus grandifolia, Ehr.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), white birch (Betula papyrifera Marsh.), or yellow birch (Betula alleghaniensis Britton.) trees, over five years of experiments in five stands distributed across three sites. In 2018, 3 years after a calcium silicate addition, sap flux density averaged 36% higher in trees in the treatment than the control plot, but this effect was not very significant (p = 0.07). Our second objective was to determine whether this failure to detect effects with greater statistical confidence was due to small effect sizes or high variability among trees. We found that tree-to-tree variability was high, with coefficients of variation averaging 39% within treatment plots. Depending on the species and year of the study, the minimum difference in sap flux density detectable with our observed variability ranged from 46% to 352%, for a simple ANOVA. We analyzed other studies reported in the literature that compared tree water use among species or treatments and found detectable differences ranging from 16% to 78%. Future sap flux density studies could benefit from power analyses to guide sampling intensity. Including pretreatment data, in the case of manipulative studies, would also increase statistical power.

Funder

USDA National Institute of Food and Agriculture

National Science Foundation

Long-Term Ecological Research Network

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3