Seasonal variation characteristics of water quality in the Sunxi River Watershed, Three Gorges Reservoir Area

Author:

Hou Wenning1,Wang Haiyan1,Zheng Yonglin1,Wang Yige1,Yang Dandan1,Meng Hai1

Affiliation:

1. School of Forestry, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, Haidian, China

Abstract

The seasonal change characteristics of water quality in the Sunxi River watershed, which is a typical watershed in the tail area of the Three Gorges Reservoir Area, must be studied to provide remediation ideas and specific measures for agricultural nonpoint source pollution in the reservoir area. A two-way repeated measures ANOVA was used to analyze the variation characteristics of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in the upstream and downstream of the Sunxi River watershed in spring, summer, and autumn of 2018–2021. With data from autumn 2018 taken as an example, path analysis was applied to study the effect degree of influencing factors on TN concentrations. The two-way repeated measures ANOVA illustrated that the COD, TN, and TP concentrations in the downstream were significantly higher than those in the upstream (P < 0.05). In addition, the COD concentrations were the highest in summer 2019, followed by spring of 2019 and 2021, and TN and TP concentrations were higher in spring and summer. The TN and TP concentrations were comparatively lower in the autumn. The path analysis showed that electrical conductance and dissolved oxygen directly affected the TN concentrations, and water temperature mainly affected the TN concentrations via the indirect effects of electrical conductance and dissolved oxygen. The water quality of upstream Sunxi River watershed was better than that of downstream, and the water quality in autumn was better than spring and summer in 2018–2021. For water quality management and ecological restoration of the Sunxi River watershed, further attention should be paid to the water quality changes in the downstream and in spring and summer and to the impact of water temperature, electrical conductivity, and dissolved oxygen on the water quality.

Funder

National Key R&D Program of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3