Meta-analytic evidence that allelopathy may increase the success and impact of invasive grasses

Author:

Singh ManyaORCID,Daehler Curtis C.

Abstract

Background In the grass family, a disproportionate number of species have been designated as being invasive. Various growth traits have been proposed to explain the invasiveness of grasses; however, the possibility that allelopathy gives invasive grasses a competitive advantage has attracted relatively little attention. Recent research has isolated plant allelochemicals that are mostly specific to the grass family that can breakdown into relatively stable, toxic byproducts. Methods We conducted a meta-analysis of studies on grass allelopathy to test three prominent hypotheses from invasion biology and competition theory: (1) on native recipients, non-native grasses will have a significantly more negative effect compared to native grasses (Novel Weapons Hypothesis); (2) among native grasses, their effect on non-native recipients will be significantly more negative compared to their effect on native recipients (Biotic Resistance Hypothesis); and (3) allelopathic impacts will increase with phylogenetic distance (Phylogenetic Distance Hypothesis). From 23 studies, we gathered a dataset of 524 observed effect sizes (delta log response ratios) measuring the allelopathic impact of grasses on growth and germination of recipient species, and we used non-linear mixed-effects Bayesian modeling to test the hypotheses. Results We found support for the Novel Weapons Hypothesis: on native recipients, non-native grasses were twice as suppressive as native grasses (22% vs 11%, respectively). The Phylogenetic Distance Hypothesis was supported by our finding of a significant correlation between phylogenetic distance and allelopathic impact. The Biotic Resistance Hypothesis was not supported. Overall, this meta-analysis adds to the evidence that allelochemicals may commonly contribute to successful or high impact invasions in the grass family. Increased awareness of the role of allelopathy in soil legacy effects associated with grass invasions may improve restoration outcomes through implementation of allelopathy-informed restoration practices. Examples of allelopathy-informed practices, and the knowledge needed to utilize them effectively, are discussed, including the use of activated carbon to neutralize allelochemicals and modify the soil microbial community.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference100 articles.

1. Allelopathic effect of Arundo donax, a mediterranean invasive grass;Abu-Romman;Plant OMICS,2015

2. Allelopathic evidence in Brachiaria decumbens and its potential to invade the Brazilian Cerrados;Barbosa;Brazilian Archives of Biology and Technology,2008

3. Package “aptg”: Automatic Phylogenetic Tree Generator

4. Patterns of phylogenetic diversity are linked to invasion impacts, not invasion resistance, in a native grassland;Bennett;Journal of Vegetation Science,2014

5. Multiple mechanisms enable invasive species to suppress native species;Bennett;American Journal of Botany,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3