The cold-stress responsive gene DREB1A involved in low-temperature tolerance in Xinjiang wild walnut

Author:

Han Liqun12,Ma Kai2,Zhao Yu2,Mei Chuang2,Mamat Aisajan2,Wang Jixun2,Qin Ling13,He Tianming1

Affiliation:

1. College of Horticulture, Xinjiang Agricultural University, Urumqi, China

2. Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China

3. College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China

Abstract

Background Low-temperatures have the potential to be a serious problem for plants and can negatively affect the normal growth and development of walnuts. DREB1/CBF (Dehydration Responsive Element Binding Protein 1/C-repeat Binding Factor), one of the most direct transcription factors in response to low-temperature stress, may improve the resistance of plants to low-temperatures by regulating their functional genes. However, few studies have been conducted in walnut. The Xinjiang wild walnut is a rare wild plant found in China, with a large number of excellent trait genes, and is hardier than cultivated walnuts in Xinjiang. Methods In this work, we identified all of the DREB1 members from the walnut genome and analyzed their expression levels in different tissues and during low-temperature stress on the Xinjiang wild walnut. The JfDREB1A gene of the Xinjiang wild walnut was cloned and transformed into Arabidopsis thaliana for functional verification. Results There were five DREB1 transcription factors in the walnut genome. Among them, the relative expression level of the DREB1A gene was significantly higher than other members in the different tissues (root, stem, leaf) and was immediately un-regulated under low-temperature stress. The overexpression of the JfDREB1A gene increased the survival rates of transgenic Arabidopsis lines, mainly through maintaining the stability of cell membrane, decreasing the electrical conductivity and increasing the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Additionally, the expression levels of cold-inducible genes like AtKIN1, AtERD10, AtRD29A, AtCOR15A and AtCOR47, were significantly increased. These results showed that the JfDREB1A gene may play an important role in the response to cold stress of the Xinjiang wild walnut. This study contributes to our understanding of the molecular mechanism of the Xinjiang wild walnut’s response to low-temperature stress and will be beneficial for developing walnut cultivars with improved cold resistance.

Funder

Project of Renovation Capacity Building for the Young Sci-Tech Talents Sponsored by Xinjiang Academy of Agricultural Sciences

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3