Prediction of individual mortality risk among patients with chronic obstructive pulmonary disease: a convenient, online, individualized, predictive mortality risk tool based on a retrospective cohort study

Author:

Lu Shubiao1,Zhou Yuwen2,Huang Xuejuan3,Lin Jinsong1,Wu Yingyu1,Zhang Zhiqiao1

Affiliation:

1. Department of Internal Medicine, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China

2. Emergency Department, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China

3. Obstetrics and Gynecology Department, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China

Abstract

Background Chronic obstructive pulmonary disease (COPD) is a serious condition with a poor prognosis. No clinical study has reported an individual-level mortality risk curve for patients with COPD. As such, the present study aimed to construct a prognostic model for predicting individual mortality risk among patients with COPD, and to provide an online predictive tool to more easily predict individual mortality risk in this patient population. Patients and methods The current study retrospectively included data from 1,255 patients with COPD. Random survival forest plots and Cox proportional hazards regression were used to screen for independent risk factors in patients with COPD. A prognostic model for predicting mortality risk was constructed using eight risk factors. Results Cox proportional hazards regression analysis identified eight independent risk factors among COPD patients: B-type natriuretic peptide (hazard ratio [HR] 1.248 [95% confidence interval (CI) 1.155–1.348]); albumin (HR 0.952 [95% CI 0.931–0.974); age (HR 1.033 [95% CI 1.022–1.044]); globulin (HR 1.057 [95% CI 1.038–1.077]); smoking years (HR 1.011 [95% CI 1.006–1.015]); partial pressure of arterial carbon dioxide (HR 1.012 [95% CI 1.007–1.017]); granulocyte ratio (HR 1.018 [95% CI 1.010–1.026]); and blood urea nitrogen (HR 1.041 [95% CI 1.017–1.066]). A prognostic model for predicting risk for death was constructed using these eight risk factors. The areas under the time-dependent receiver operating characteristic curves for 1, 3, and 5 years were 0.784, 0.801, and 0.806 in the model cohort, respectively. Furthermore, an online predictive tool, the “Survival Curve Prediction System for COPD patients”, was developed, providing an individual mortality risk predictive curve, and predicted mortality rate and 95% CI at a specific time. Conclusion The current study constructed a prognostic model for predicting an individual mortality risk curve for COPD patients after discharge and provides a convenient online predictive tool for this patient population. This predictive tool may provide valuable prognostic information for clinical treatment decision making during hospitalization and health management after discharge (https://zhangzhiqiao15.shinyapps.io/Smart_survival_predictive_system_for_COPD/).

Funder

Foshan Science and Technology Bureau

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3