A novel alkane monooxygenase (alkB) clade revealed by massive genomic survey and its dissemination association with IS elements

Author:

Wang Shaojing1,Li Guoqiang1,Liao Zitong1,Liu Tongtong1,Ma Ting1

Affiliation:

1. College of Life Sciences, Nankai University, Tianjin, China

Abstract

Background Alkanes are important components of fossil energy, such as crude oil. The alkane monooxygenase encoded by alkB gene performs the initial step of alkane degradation under aerobic conditions. The alkB gene is well studied due to its ubiquity as well as the availability of experimentally functional evidence. The alkBFGHJKL and alkST clusters are special kind of alkB-type alkane hydroxylase system, which encode all proteins necessary for converting alkanes into corresponding fatty acids. Methods To explore whether the alkBFGHJKL and alkST clusters were widely distributed, we performed a large-scale analysis of isolate and metagenome assembled genome data (>390,000 genomes) to identify these clusters, together with distributions of corresponding taxonomy and niches. The set of alk-genes (including but not limited to alkBGHJ) located near each other on a DNA sequence was defined as an alk-gene cluster in this study. The alkB genes with alkGHJ located nearby on a DNA sequence were picked up for the investigation of putative alk-clusters. Results A total of 120 alk-gene clusters were found in 117 genomes. All the 117 genomes are from strains located only in α- and γ-proteobacteria. The alkB genes located in alk-gene sets were clustered into a deeply branched mono-clade. Further analysis showed similarity organization types of alk-genes were observed within closely related species. Although a large number of IS elements were observed nearby, they did not lead to the wide spread of the alk-gene cluster. The uneven distribution of these elements indicated that there might be other factors affecting the transmission of alk-gene clusters. Conclusions We conducted systematic bioinformatics research on alk-genes located near each other on a DNA sequence. This benchmark dataset of alk-genes can provide base line for exploring its evolutional and ecological importance in future studies.

Funder

National Key Research and Development Plan

NSFC project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference46 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3