DHU-Pred: accurate prediction of dihydrouridine sites using position and composition variant features on diverse classifiers

Author:

Suleman Muhammad Taseer1,Alkhalifah Tamim2,Alturise Fahad2,Khan Yaser Daanial1

Affiliation:

1. Department of Computer Science, School of Systems and Technology, University of Management & Technology, Lahore, Pakistan

2. Department of Computer, College of Science and Arts in Ar Rass Qassim University, Ar Rass, Qassim, Saudi Arabia

Abstract

Background Dihydrouridine (D) is a modified transfer RNA post-transcriptional modification (PTM) that occurs abundantly in bacteria, eukaryotes, and archaea. The D modification assists in the stability and conformational flexibility of tRNA. The D modification is also responsible for pulmonary carcinogenesis in humans. Objective For the detection of D sites, mass spectrometry and site-directed mutagenesis have been developed. However, both are labor-intensive and time-consuming methods. The availability of sequence data has provided the opportunity to build computational models for enhancing the identification of D sites. Based on the sequence data, the DHU-Pred model was proposed in this study to find possible D sites. Methodology The model was built by employing comprehensive machine learning and feature extraction approaches. It was then validated using in-demand evaluation metrics and rigorous experimentation and testing approaches. Results The DHU-Pred revealed an accuracy score of 96.9%, which was considerably higher compared to the existing D site predictors. Availability and Implementation A user-friendly web server for the proposed model was also developed and is freely available for the researchers.

Funder

Deanship of Scientific Research, Qassim University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3