Affiliation:
1. CSIR-Institute of Genomics and Integrative Biology, Genomics and Molecular Medicine, Delhi, India
2. Institute of Hypoxia Research, New Delhi, India
Abstract
Background
SARS-CoV-2 has affected every demography disproportionately, including even the native highland populations. Hypobaric-hypoxic settings at high-altitude (HA, >2,500 masl) present an extreme environment that impacts the survival of permanent residents, possibly including SARS-CoV-2. Conflicting hypotheses have been presented for COVID-19 incidence and fatality at HA.
Objectives
To evaluate protection or risk against COVID-19 incidence and fatality in humans under hypobaric-hypoxic environment of high-altitude (>2,501 masl).
Methods
Global COVID-19 data of March 2020-21, employed from official websites of the Indian Government, John Hopkins University, and Worldometer were clustered into 6 altitude categories. Clinical cofactors and comorbidities data were evaluated with COVID-19 incidence and fatality. Extensive comparisons and correlations using several statistical tools estimated the risk and protection.
Results
Of relevance, data analyses revealed four distinct responses, namely, partial risk, total risk, partial protection, and total protection from COVID-19 at high-altitude indicating a mixed baggage and complexity of the infection. Surprisingly, it included the countries within the same geographic region. Moreover, body mass index, hypertension, and diabetes correlated significantly with COVID-19 incidence and fatality rate (P ≤ 0.05).
Conclusions
Varied patterns of protection and risk against COVID-19 incidence and fatality were observed among the high-altitude populations. It is though premature to generalize COVID-19 effects on any particular demography without further extensive studies.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献