Molecular marker development and genetic diversity exploration in Medicago polymorpha

Author:

Ren Hailong123,Wei Zhenwu1,Zhou Bo3,Chen Xiang1,Gao Qiang3,Zhang Zhibin4

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China

2. Guangzhou Academy of Agricultural Sciences, Guangzhou, Guangdong, China

3. Hainan Sanya Test Center of Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya, Hainan, China

4. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China

Abstract

Medicago polymorpha L. (bur clover), an invasive plant species of the genus Medicago, has been traditionally used in China as an edible vegetable crop because of its high nutritive value. However, few molecular markers for M. polymorpha have been identified. Using the recently published high-quality reference genome of M. polymorpha, we performed a specific-locus amplified fragment sequencing (SLAF-seq) analysis of 10 M. polymorpha accessions to identify molecular markers and explore genetic diversity. A total of 52,237 high-quality single nucleotide polymorphisms (SNPs) were developed. These SNPs were mostly distributed on pseudochromosome 3, least distributed on pseudochromosome 7, and relatively evenly distributed on five other pseudochromosomes of M. polymorpha. Phenotypic analysis showed that there was a great difference in phenotypic traits among different M. polymorpha accessions. Moreover, clustering all M. polymorpha accessions based on their phenotypic traits revealed three groups. Both phylogenetic analysis and principal component analysis (PCA) of all M. polymorpha accessions based on SNP markers consistently indicated that all M. polymorpha accessions could be divided into three distinct groups (I, II, and III). Subsequent genetic diversity analysis for the 10 M. polymorpha accessions validated the effectiveness of the M. polymorpha germplasm molecular markers in China. Additionally, SSR mining analysis was also performed to identify polymorphic SSR motifs, which could provide valuable candidate markers for the further breeding of M. polymorpha. Since M. polymorpha genetics have not been actively studied, the molecular markers generated from our research will be useful for further research on M. polymorpha resource utilization and marker-assisted breeding.

Funder

Hainan Provincial Natural Science Foundation of China

Science and Technology Support Project of Jiangsu Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3