Evaluation of primers for the detection of deadwood-inhabiting archaea via amplicon sequencing

Author:

Moll Julia1,Hoppe Björn2

Affiliation:

1. Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ, Halle (Saale), Germany

2. Institute for National and International Plant Health, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany

Abstract

Archaea have been reported from deadwood of a few different tree species in temperate and boreal forest ecosystems in the past. However, while one of their functions is well linked to methane production any additional contribution to wood decomposition is not understood and underexplored which may be also attributed to lacking investigations on their diversity in this substrate. With this current work, we aim at encouraging further investigations by providing aid in primer choice for DNA metabarcoding using Illumina amplicon sequencing. We tested 16S primer pairs on genomic DNA extracted from woody tissue of four temperate deciduous tree species. Three primer pairs were specific to archaea and one prokaryotic primer pair theoretically amplifies both, bacterial and archaeal DNA. Methanobacteriales and Methanomassiliicoccales have been consistently identified as dominant orders across all datasets but significant variability in ASV richness was observed using different primer combinations. Nitrososphaerales have only been identified when using archaea-specific primer sets. In addition, the most commonly applied primer combination targeting prokaryotes in general yielded the lowest relative proportion of archaeal sequences per sample, which underlines the fact, that using target specific primers unraveled a yet unknown diversity of archaea in deadwood. Hence, archaea seem to be an important group of the deadwood-inhabiting community and further research is needed to explore their role during the decomposition process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3