A geospatial risk analysis graphical user interface for identifying hazardous chemical emission sources
Author:
Hou Hongfei1,
Ren Huiying1,
Royer Patrick1,
Yu Xiao-Ying2
Affiliation:
1. Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
2. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
Abstract
Background
Performing back trajectory and forward trajectory using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) is a reliable approach for assessing particle transport after release among mid-field atmospheric models. HYSPLIT has an externally facing online interface that allows non-expert users to run the model trajectories without requiring extensive training or programming. However, the existing HYSPLIT interface is limited if simulations have a large amount of meteorological data and timesteps that are not coincident. The objective of this study is to design and develop a more robust tool to rapidly evaluate hazard transport conditions and to perform risk analysis, while still maintaining an intuitive and user-friendly interface.
Methods
HYSPLIT calculates forward and backward trajectories of particles based on wind speed, wind direction, and the corresponding location, timestamp, and Pasquill stability classes of the regions of the atmosphere in terms of the wind speed, the amount of solar radiation, and the fractional cloud cover. The computed particle transport trajectories, combined with the online Proton Transfer Reaction-Mass Spectrometry (PTR-MS) data (https://figshare.com/articles/dataset/ARL_Data_from_PROS_station_at_Hanford_site/19993964), can be used to identify and quantify the sources and affected area of the hazardous chemicals’ emission using the potential source distribution function (PSDF). PSDF is an improved statistical function based on the well-known potential source contribution function (PSCF) in establishing the air pollutant source and receptor relationship. Performing this analysis requires a range of meteorological and pollutant concentration measurements to be statistically meaningful. The existing HYSPLIT graphical user interface (GUI) does not easily permit computations of trajectories of a dataset of meteorological data in high temporal frequency. To improve the performance of HYSPLIT computations from a large dataset and enhance risk analysis of the accidental release of material at risk, a geospatial risk analysis tool (GRAT-GUI) is created to allow large data sets to be processed instantaneously and to provide ease of visualization.
Results
The GRAT-GUI is a native desktop-based application and can be run in any Windows 10 system without any internet access requirements, thus providing a secure way to process large meteorological datasets even on a standalone computer. GRAT-GUI has features to import, integrate, and convert meteorological data with various formats for hazardous chemical emission source identification and risk analysis as a self-explanatory user interface. The tool is available at https://figshare.com/articles/software/GRAT/19426742.
Funder
Department of Energy (DOE) NNSA AU31 program
Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle Memorial Institute
Laboratory Directed Research and Development (LDRD) of the Physical Sciences Directorate of the Oak Ridge National Laboratory
UT-Battelle, LLC, for the DOE
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Reference24 articles.
1. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park;Ashbaugh;Atmospheric Environment,1985
2. Toxicological assessment of hanford tank headspace chemicals—determination of chemicals of potential concern;Burgeson,2004
3. Qualitative determination of source regions of aerosol in Canadian high Arctic;Cheng;Environmental Science & Technology,1993
4. PSDF: a MATLAB/octave script for computing potential source density functions (PSDFs);Daehyun,2022
5. HYSPLIT USER’s GUIDE: Version 5;Draxler,2020