Comparative mitogenome analysis reveals mitochondrial genome characteristics in eight strains of Beauveria

Author:

Bai Yu12,Gao Xuyuan2,Wang Hui3,Ye Lin4,Zhang Xianqun4,Huang Wei4,Long Xiuzhen2,Yang Kang4,Li Guoyong3,Luo Jianlin3,Wang Jiyue4,Yu Yonghao2

Affiliation:

1. College of Mathematics & Information Science, Guiyang University, Guiyang, China

2. Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning, China

3. Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China

4. College of Biology and Environmental Engineering, Guiyang University, Guiyang, China

Abstract

Despite the significant progress that has been made in the genome sequencing of Beauveria species, mitochondrial genome (mitogenome) used to examine genetic diversity within fungal populations. Complete mitogenomes of Beauveria species can be easily sequenced and assembled using various sequencing techniques. However, since mitogenome annotations are mainly derived from similar species comparison and software prediction, and are not supported by RNA-seq transcripts data, it leads to problems with the accuracy of mitochondrial annotations and the inability to understand RNA processing. In this study, we assembled and annotated the mitogenome of eight Beauveria strains using Illumina DNA and RNA sequencing data. The circular mitogenome of eight Beauveria strains ranged from 26,850 bp (B. caledonica strain ATCC 64970) to 35,999 bp (B. brongniartii strain GYU-BMZ03), with the intronic insertions accounting for most of the size variation, thus contributing to a total mitochondrial genome (mitogenome) size of 7.01% and 28.95%, respectively. Intron number variations were not directly related to the evolutionary relationship distance. Besides ribosomal protein S3 (rps3), most introns are lost too quickly and lack the stability of protein-coding genes. The short RNA-seq reads from next-generation sequencing can improve the mitochondrial annotation accuracy and help study polycistronic transcripts and RNA processing. The transcription initiation sites may be located in the control region. Most introns do not serve as taxonomic markers and also lack open reading frames (ORFs). We assumed that the poly A tail was added to the polycistronic transcript before splicing and one polycistronic transcript (trnM(1)-trnL(1)-trnA-trnF-trnK-trnL(2)-trnQ-trnH-trnM(2)-nad2-nad3-atp9-cox2-trnR(1)-nad4L-nad5-cob-trnC-cox1-trnR(2)-nad1-nad4-atp8-atp6-rns-trnY-trnD-trnS-trnN-cox3-trnG-nad6-trnV-trnI-trnS-trnW-trnP-rnl(rps3)-trnT-trnE-trnM(3)) was first processed from the mitogenome and was subsequently processed into smaller mono-, di-, or tricistronic RNAs.

Funder

Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests

Foundational Research Fund of Guangxi Academy of Agricultural Sciences

Guangxi Natural Science Foundation

Guangxi Innovation-driven Development Special Foundation

Guizhou Fundamental Research Program

Guizhou High-level Innovative Talents

Discipline and Master’s Site Construction Project of Guiyang University by Guiyang City Financial Support Guiyang University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3