Evaluating the effect of the incidence angle of ALOS-2 PALSAR-2 on detecting aquaculture facilities for sustainable use of coastal space and resources

Author:

Murata Hiroki12,Fujii Toyonobu2,Yonezawa Chinatsu2

Affiliation:

1. Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

2. Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

Abstract

Background Driven by the growing world population, aquaculture plays a key role in meeting the increasing demand for food. However, aquaculture facilities in Japan are widely installed in coastal waters where natural disasters, such as typhoons and tsunamis, might wash these facilities away, thereby interfering with maritime navigation safety. Therefore, it is imperative to efficiently monitor the state of aquaculture facilities daily, particularly after a disaster in real time. To this end, several new space-borne L-band synthetic aperture radars (SARs) continue to be launched now and in the future, whose utilizations are expected to increase nationally and internationally. An example is the Japan Aerospace Exploration Agency, currently operating a SAR that can be operated day and night, and even under cloudy conditions, called ALOS-2 PALSAR-2. Methods Based on the above facts, this study evaluated the effect of the incidence angle of ALOS-2 PALSAR-2 HH single-polarization data, using 3 m spatial resolution, on aquaculture raft detection. As the study site, we selected Ago Bay, located on the Pacific coast of Mie Prefecture in central Japan since the Nankai Trough Megathrust Earthquake and tsunamis have been predicted to occur in the future around this area. Then, we analyzed the sigma zero (backscattering coefficient) of aquaculture rafts and their surrounding sea surfaces, including the relationships between satellite orbits and aquaculture raft directions. Results Investigations revealed that the optimum incidence angle for detecting aquaculture rafts in this study was 33.8°–45.1°. Differences in the sigma zero values existed between the ascending and descending orbits. However, the incidence angles differed on the orbits. Then, differences in the median sigma zero values across a range of incidence angles were evaluated under the descending orbit. In addition, when the directions of the aquaculture rafts were closely perpendicular to the satellite orbit, aquaculture rafts tended to show the highest values of sigma zero due to Bragg resonance scattering. Hence, this knowledge may allow for the rapid detection of aquaculture rafts during an emergency without going on-site.

Funder

Collaboration Research Program of IDEAS, Chubu University

Japan Science and Technology Agency

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference31 articles.

1. Full polarimetric ALOS-2/PALSAR-2 analysis of backscattering characteristics from various types of coasts;Asaka;International Journal of Remote Sensing,2020

2. Plan for specific emergency response activities in the event of a Nankai Trough Megathrust Earthquake [in Japanese];Cabinet Office, Government of Japan,2021

3. Separability of sea ice types from wide swath C- and L-band synthetic aperture radar imagery acquired during the melt season;Casey;Remote Sensing of Environment,2016

4. The state of world fisheries and aquaculture 2022;FAO,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3