Maximum aerobic speed, maximum oxygen consumption, and running spatiotemporal parameters during an incremental test among middle- and long-distance runners and endurance non-running athletes

Author:

Casado Arturo1,Tuimil José Luis2,Iglesias Xavier3,Fernández-del-Olmo Miguel1,Jiménez-Reyes Pedro1,Martín-Acero Rafael2,Rodríguez Ferran A.3

Affiliation:

1. Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain

2. Faculty of Sports Sciences and Physical Education, Universidad de La Coruña, La Coruña, Galicia, Spain

3. INEFC-Barcelona Sports Science Research Group, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Cataluña, Spain

Abstract

Background Maximal aerobic speed (MAS) is a useful parameter to assess aerobic capacity and estimate training intensity in middle- and long-distance runners. However, whether middle- and long-distance runners reach different levels of MAS compared to other endurance athletes with similar V̇O2max has not been previously studied. Therefore, we aimed to compare V̇O2max, MAS and spatiotemporal parameters between sub-elite middle- and long-distance runners (n = 6) and endurance non-runners (n = 6). In addition, we aimed to compare the maximal blood lactate concentration [BLa] experienced by participants after conducting these tests. Methods Telemetric portable respiratory gas analysis, contact and flight time, and stride length and rate were measured using a 5-m contact platform during an incremental test at a synthetic athletics track. V̇O2, heart rate, respiratory quotient values in any 15 s average period during the test were measured. [BLa] was analyzed after the test . Running spatiotemporal parameters were recorded at the last two steps of each 400 m lap. A coefficient of variation (%CV) was calculated for each spatiotemporal variable in each participant from 8 km h−1 onwards. Results Whereas runners reported faster MAS (21.0 vs. 18.2 km h−1) than non-runners (p  =  0.0001, ES = 3.0), no differences were found for V̇O2max and maximum blood lactate concentration during the running tests (p > 0.05). While significant increases in flight time and stride length and frequency (p < 0.001, 0.52 ≤ ${\eta }_{p}^{2}$ ≤ 0.8) were observed throughout the tests, decreases in contact time (p < 0.001, ${\eta }_{p}^{2}=0.9$) were reported. Runners displayed a greater %CV (p = 0.015) in stride length than non-runners. We conclude that middle- and long-distance runners can achieve a faster MAS compared to non-running endurance athletes despite exhibiting a similar V̇O2max. This superior performance may be associated to a greater mechanical efficiency. Overall, runners displayed a greater ability to modify stride length to achieve fast speeds, which may be related to a more mechanically efficient pattern of spatiotemporal parameters than non-runners.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3