Affiliation:
1. Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
2. Department of Pediatrics, Liqun Hospital, Putuo District, Shanghai, China
Abstract
Background
Glucocorticoids (GCs) are commonly used to treat autoimmune diseases and malignancies in children and adolescents. Growth retardation is a common adverse effect of GC treatment in pediatric patients. Accumulating evidence indicates that non-coding RNAs (ncRNAs) are involved in the pathogenesis of glucocorticoid-induced growth retardation (GIGR), but the roles of specific ncRNAs in growth remain largely unknown.
Methods
In this study, 2-week-old male Sprague-Dawley rats had been treated with 2 mg/kg/d of dexamethasone for 7 or 14 days, after which the growth plate tissues were collected for high-throughput RNA sequencing to identify differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in GIGR rats.
Results
Transcriptomic analysis identified 1,718 mRNAs, 896 lncRNAs, 60 circRNAs, and 72 miRNAs with different expression levels in the 7d group. In the 14d group, 1,515 mRNAs, 880 lncRNAs, 46 circRNAs, and 55 miRNAs with differential expression were identified. Four mRNAs and four miRNAs that may be closely associated with the development of GIGR were further validated by real-time quantitative fluorescence PCR. Function enrichment analysis indicated that the PI3K-Akt signaling pathway, NF-kappa B signaling pathway, and TGF-β signaling pathway participated in the development of the GIGR. Moreover, the constructed ceRNA networks suggested that several miRNAs (including miR-140-3p and miR-127-3p) might play an important role in the pathogenesis of GIGR.
Conclusions
These results provide new insights and important clues for exploring the molecular mechanisms underlying GIGR.
Funder
The Jin Lei Pediatric Endocrinology Growth Research Fund for Young Physicians
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献