Trophic state (TSISD) and mixing type significantly influence pelagic zooplankton biodiversity in temperate lakes (NW Poland)

Author:

Sługocki Łukasz12,Czerniawski Robert12

Affiliation:

1. Faculty of Biology, University of Szczecin, Szczecin, Poland

2. University of Szczecin, Center of Molecular Biology and Biotechnology, Szczecin, Poland

Abstract

BackgroundLake depth and the consequent mixing regime and thermal structure have profound effects on ecosystem functioning, because depth strongly affects the availability of nutrients, light, and oxygen. All these conditions influence patterns of zooplankton diversity. Zooplankton are a key component of the aquatic environment and are essential to maintaining natural processes in freshwater ecosystems. However, zooplankton biodiversity can be different regard to depth, mixing type and trophic state. Therefore, the aim of this study was to examine how depth and mixing regime affect zooplankton diversity in lakes. We also investigated the vertical distribution of diversity across a trophic gradient of lakes.MethodsA total of 329 zooplankton samples from 79 temperate lakes (36 polymictic and 43 dimictic) were collected. The biodiversity of zooplankton was calculated using species richness (SR) and the Shannon index (SI). An index based on Secchi disc visibility was used to determine the trophic state index (TSISD) of lakes. The one-way ANOVA with Duncan’s post hoc test were used to determine differences in zooplankton biodiversity between mictic lake types and thermal layers. To find the best predictors for zooplankton biodiversity a multiple stepwise regression was used. The rarefaction method was used to evaluate the impact of mixing types, thermal layers, and the TSISDon zooplankton biodiversity indices. A Sørensen similarity analysis and nonmetric multidimensional scaling (NMDS) were performed to describe the similarity patterns in species composition among lakes.ResultsWe identified a total of 151 taxa from 36 polymictic and 43 dimictic lakes. Lake depth and the TSISDwere significantly correlated with the biodiversity of lake zooplankton. The results of ANOVA and Duncan tests show that mictic type and thermal zones had a significant effect on zooplankton biodiversity. The rarefaction curve showed significant differences in zooplankton biodiversity, which was greater in lakes with lower trophic state. Ordination by NMDS showed clustering of different mictic types, thermal layers, and composition changes throughout the TSISDprofile. Moreover, we determined that polymictic lakes are more heterogeneous than dimictic lakes in regard to zooplankton similarities.DiscussionBoth mictic lake types were characterized by varying levels of zooplankton biodiversity, which is shaped by the communities’ response to lake depth, thermal layers and TSISDvalues. The zooplankton SR and SI (during daylight hours) depends greatly on the mixing type. Lake type also indicates the importance of the metalimnion in shaping zooplankton biodiversity in dimictic lakes. In addition, data from NW Polish lakes indicated that the increase of the TSISDleads to taxonomic shifts and has a negative effect on the diversity of all groups of zooplankton.

Funder

University of Szczecin

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3