LSB-based pre-embedding video steganography with rotating & shifting poly-pattern block matrix

Author:

Hacimurtazaoglu Murat1,Tutuncu Kemal2

Affiliation:

1. Ardesen Vocational School, Computer Programming, Recep Tayyip Erdogan University, Rize, Turkey

2. Electric Electronics Engineering, Selcuk University Technology Faculty, Konya, Turkey

Abstract

Background In terms of data-hiding areas, video steganography is more advantageous compared to other steganography techniques since it uses video as its cover medium. For any video steganography, the good trade-off among robustness, imperceptibility, and payload must be created and maintained. Even though it has the advantage of capacity, video steganography has the robustness problem especially regarding spatial domain is used to implement it. Transformation operations and statistical attacks can harm secret data. Thus, the ideal video steganography technique must provide high imperceptibility, high payload, and resistance towards visual, statistical and transformation-based steganalysis attacks. Methods One of the most common spatial methods for hiding data within the cover medium is the Least Significant Bit (LSB) method. In this study, an LSB-based video steganography application that uses a poly-pattern key block matrix (KBM) as the key was proposed. The key is a 64 × 64 pixel block matrix that consists of 16 sub-pattern blocks with a pixel size of 16 × 16. To increase the security of the proposed approach, sub-patterns in the KBM are allowed to shift in four directions and rotate up to 270° depending on the user preference and logical operations. For additional security XOR and AND logical operations were used to determine whether to choose the next predetermined 64 × 64 pixel block or jump to another pixel block in the cover video frame to place a KBM to embed the secret data. The fact that the combination of variable KBM structure and logical operator for the secret data embedding distinguishes the proposed algorithm from previous video steganography studies conducted with LSB-based approaches. Results Mean Squared Error (MSE), Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) parameters were calculated for the detection of the imperceptibility (or the resistance against visual attacks ) of the proposed algorithm. The proposed algorithm obtained the best MSE, SSIM and PSNR parameter values based on the secret message length as 0.00066, 0.99999, 80.01458 dB for 42.8 Kb of secret message and 0.00173, 0.99999, 75.72723 dB for 109 Kb of secret message, respectively. These results are better than the results of classic LSB and the studies conducted with LSB-based video steganography approaches in the literature. Since the proposed system allows an equal amount of data embedding in each video frame the data loss will be less in transformation operations. The lost data can be easily obtained from the entire text with natural language processing. The variable structure of the KBM, logical operators and extra security preventions makes the proposed system be more secure and complex. This increases the unpredictability and resistance against statistical attacks. Thus, the proposed method provides high imperceptibility and resistance towards visual, statistical and transformation-based attacks while acceptable even high payload.

Publisher

PeerJ

Subject

General Computer Science

Reference33 articles.

1. Digital Video Concepts, Methods, and Metrics

2. A lossless data hiding scheme on video raw data robust against H.264/AVC compression;Alavianmehr,2012

3. Data hiding in video;Chae,1999

4. Implementation of video steganography using hash function in LSB technique;Chitra;International Journal of Engineering Research & Technology,2013

5. A survey paper on video steganography;Choudry;International Journal of Computer Science and Information Technologies (IJCSIT),2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3