Experimental interpretation of adequate weight-metric combination for dynamic user-based collaborative filtering

Author:

Okyay Savas12ORCID,Aygun Sercan34ORCID

Affiliation:

1. Computer Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey

2. Computer Engineering, Eskisehir Technical University, Eskisehir, Turkey

3. Computer Engineering, Yildiz Technical University, Istanbul, Esenler, Turkey

4. Electronics Engineering, Istanbul Technical University, Istanbul, Maslak, Turkey

Abstract

Recommender systems include a broad scope of applications and are associated with subjective preferences, indicating variations in recommendations. As a field of data science and machine learning, recommender systems require both statistical perspectives and sufficient performance monitoring. In this paper, we propose diversified similarity measurements by observing recommendation performance using generic metrics. Considering user-based collaborative filtering, the probability of an item being preferred by any user is measured. Having examined the best neighbor counts, we verified the test item bias phenomenon for similarity equations. Because of the statistical parameters used for computing in a global scope, there is implicit information in the literature, whether those parameters comprise the focal point user data statically. Regarding each dynamic prediction, user-wise parameters are expected to be generated at runtime by excluding the item of interest. This yields reliable results and is more compatible with real-time systems. Furthermore, we underline the effect of significance weighting by examining the similarities between a user of interest and its neighbors. Overall, this study uniquely combines significance weighting and test-item bias mitigation by inspecting the fine-tuned neighborhood. Consequently, the results reveal adequate similarity weight and performance metric combinations. The source code of our architecture is available at https://codeocean.com/capsule/1427708/tree/v1.

Publisher

PeerJ

Subject

General Computer Science

Reference99 articles.

1. Music recommender system based on genre using convolutional recurrent neural networks;Adiyansjah,2019

2. Combining metadata and co-citations for recommending related papers;Ahmad;Turkish Journal of Electrical Engineering & Computer Sciences,2020

3. Efficient top-N recommendation for very large scale binary rated datasets;Aiolli,2013

4. User’s guide to correlation coefficients;Akoglu;Turkish Journal of Emergency Medicine,2018

5. A study on the accuracy of prediction in recommendation system based on similarity measures;AL-Bakri;Baghdad Science Journal,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3