Adapting multilingual vision language transformers for low-resource Urdu optical character recognition (OCR)

Author:

Cheema Musa Dildar Ahmed1,Shaiq Mohammad Daniyal1,Mirza Farhaan2,Kamal Ali1,Naeem M. Asif1

Affiliation:

1. Department of Artificial Intelligence and Data Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan

2. School of Computer, Engineering and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

Abstract

In the realm of digitizing written content, the challenges posed by low-resource languages are noteworthy. These languages, often lacking in comprehensive linguistic resources, require specialized attention to develop robust systems for accurate optical character recognition (OCR). This article addresses the significance of focusing on such languages and introduces ViLanOCR, an innovative bilingual OCR system tailored for Urdu and English. Unlike existing systems, which struggle with the intricacies of low-resource languages, ViLanOCR leverages advanced multilingual transformer-based language models to achieve superior performances. The proposed approach is evaluated using the character error rate (CER) metric and achieves state-of-the-art results on the Urdu UHWR dataset, with a CER of 1.1%. The experimental results demonstrate the effectiveness of the proposed approach, surpassing state of the-art baselines in Urdu handwriting digitization.

Publisher

PeerJ

Reference29 articles.

1. An attention based method for offline handwritten urdu text recognition;Anjum,2020

2. CALText: contextual attention localization for offline handwritten text;Anjum;Neural Processing Letters,2023

3. Character region awareness for text detection;Baek,2019

4. Region-based cnn for logo detection;Bao,2016

5. TextRecognitionDataGenerator;Belval,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3