Student timetabling genetic algorithm accounting for student preferences

Author:

Mahlous Ahmed Redha1,Mahlous Houssam2

Affiliation:

1. Department of Computer Science, Prince Sultan University, Riyadh, Saudi Arabia

2. Department of Computer Science, King’s College London, University of London, London, United Kingdom

Abstract

Universities face a constant challenge when distributing students and allocating them to their required classes, especially for a large mass of students. Generating feasible timetables is a strenuous task that requires plenty of resources, which makes it impractical to take student preferences into consideration during the process. Timetabling and scheduling problems are proven to be NP-hard due to their complex nature and large search spaces. A genetic algorithm (GA) that assigns students to their classes based on their preferences is proposed as a solution to this problem and is implemented in this article. The GA’s performance is enhanced by applying different metaheuristic concepts and by tailoring the genetic operators to the given problem. The quality of the solutions generated is boosted further with the unique repair and improvement functions that were implemented in conjunction with the genetic algorithm. The success of the GA was evaluated by using different datasets of varying complexity and by assessing the quality of the solutions generated. The results obtained were promising and the algorithm guarantees the feasibility of solutions as well as satisfying more than 90% of student preferences even for the most complex problems.

Funder

The Prince Sultan University

Publisher

PeerJ

Subject

General Computer Science

Reference22 articles.

1. Introducing a novel parameter in generation of course timetable with genetic algorithm;Bathla,2014

2. Constraint satisfaction problems: algorithms and applications;Brailsford;European Journal of Operational Research,1999

3. Recent research directions in automated timetabling;Burke;European Journal of Operational Research,2002

4. Recent developments in practical course timetabling;Carter,1997

5. A genetic algorithm solving a weekly course-timetabling problem;Erben,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3