Parameter optimization of histogram-based local descriptors for facial expression recognition

Author:

Badi Mame AntoineORCID,Tapamo Jules-Raymond

Abstract

An important task in automatic facial expression recognition (FER) is to describe facial image features effectively and efficiently. Facial expression descriptors must be robust to variable scales, illumination changes, face view, and noise. This article studies the application of spatially modified local descriptors to extract robust features for facial expressions recognition. The experiments are carried out in two phases: firstly, we motivate the need for face registration by comparing the extraction of features from registered and non-registered faces, and secondly, four local descriptors (Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Compound Local Binary Patterns (CLBP), and Weber’s Local Descriptor (WLD)) are optimized by finding the best parameter values for their extraction. Our study reveals that face registration is an important step that can improve the recognition rate of FER systems. We also highlight that a suitable parameter selection can increase the performance of existing local descriptors as compared with state-of-the-art approaches.

Publisher

PeerJ

Subject

General Computer Science

Reference44 articles.

1. Facial expression recognition using human machine interaction and multi-modal visualization analysis for healthcare applications;Altameem;Image and Vision Computing,2020

2. A comparative study of local descriptors and classifiers for facial expression recognition;Badi Mame;Applied Sciences,2022

3. Facial expression recognition based on local fourier coefficients and facial fourier descriptors;Benitez-Garcia;Journal of Signal and Information Processing,2017

4. Detection of facial emotions while reading online text;Bhadur,2021

5. Spaghetti labeling: directed acyclic graphs for block-based connected components labeling;Bolelli;IEEE Transactions on Image Processing,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3